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Abstract 

An important part of industrial robot manipulators is to achieve desired position and 

orientation of end effector or tool so as to complete the pre-specified task. To achieve 

the above stated goal one should have the sound knowledge of inverse kinematic 

problem. The problem of getting inverse kinematic solution has been on the outline of 

various researchers and is deliberated as thorough researched and mature problem. 

There are many fields of applications of robot manipulators to execute the given tasks 

such as material handling, pick-n-place, planetary and undersea explorations, space 

manipulation, and hazardous field etc. Moreover, medical field robotics catches 

applications in rehabilitation and surgery that involve kinematic, dynamic and control 

operations. Therefore, industrial robot manipulators are required to have proper 

knowledge of its joint variables as well as understanding of kinematic parameters.  The 

motion of the end effector or manipulator is controlled by their joint actuator and this 

produces the required motion in each joints. Therefore, the controller should always 

supply an accurate value of joint variables analogous to the end effector position. Even 

though industrial robots are in the advanced stage, some of the basic problems in 

kinematics are still unsolved and constitute an active focus for research. Among these 

unsolved problems, the direct kinematics problem for parallel mechanism and inverse 

kinematics for serial chains constitute a decent share of research domain. The forward 

kinematics of robot manipulator is simpler problem and it has unique or closed form 

solution. The forward kinematics can be given by the conversion of joint space to 

Cartesian space of the manipulator. On the other hand inverse kinematics can be 

determined by the conversion of Cartesian space to joint space. The inverse kinematic 

of the robot manipulator does not provide the closed form solution. Hence, industrial 

manipulator can achieve a desired task or end effector position in more than one 

configuration. Therefore, to achieve exact solution of the joint variables has been the 

main concern to the researchers.  

A brief introduction of industrial robot manipulators, evolution and classification is 

presented. The basic configurations of robot manipulator are demonstrated and their 

benefits and drawbacks are deliberated along with the applications.  The difficulties to 

solve forward and inverse kinematics of robot manipulator are discussed and solution of 

inverse kinematic is introduced through conventional methods. In order to accomplish 

the desired objective of the work and attain the solution of inverse kinematic problem 

an efficient study of the existing tools and techniques has been done.  

A review of literature survey and various tools used to solve inverse kinematic problem 

on different aspects is discussed. The various approaches of inverse kinematic solution 
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is categorized in four sections namely structural analysis of mechanism, conventional 

approaches, intelligence or soft computing approaches and optimization based 

approaches. A portion of important and more significant literatures are thoroughly 

discussed and brief investigation is made on conclusions and gaps with respect to the 

inverse kinematic solution of industrial robot manipulators. Based on the survey of 

tools and techniques used for the kinematic analysis the broad objective of the present 

research work is presented as; to carry out the kinematic analyses of different 

configurations of industrial robot manipulators. The mathematical modelling of selected 

robot manipulator using existing tools and techniques has to be made for the 

comparative study of proposed method. On the other hand, development of new 

algorithm and their mathematical modelling for the solution of inverse kinematic 

problem has to be made for the analysis of quality and efficiency of the obtained 

solutions. Therefore, the study of appropriate tools and techniques used for the solution 

of inverse kinematic problems and comparison with proposed method is considered. 

Moreover, recommendation of the appropriate method for the solution of inverse 

kinematic problem is presented in the work.  

Apart from the forward kinematic analysis, the inverse kinematic analysis is quite 

complex, due to its non-linear formulations and having multiple solutions. There is no 

unique solution for the inverse kinematics thus necessitating application of appropriate 

predictive models from the soft computing domain. Artificial neural network (ANN) 

can be gainfully used to yield the desired results. Therefore, in the present work several 

models of artificial neural network (ANN) are used for the solution of the inverse 

kinematic problem. This model of ANN does not rely on higher mathematical 

formulations and are adept to solve NP-hard, non-linear and higher degree of 

polynomial equations. Although intelligent approaches are not new in this field but 

some selected models of ANN and their hybridization has been presented for the 

comparative evaluation of inverse kinematic. The hybridization scheme of ANN and an 

investigation has been made on accuracies of adopted algorithms.  

On the other hand, any Optimization algorithms which are capable of solving various 

multimodal functions can be implemented to solve the inverse kinematic problem. To 

overcome the problem of conventional tool and intelligent based method the 

optimization based approach can be implemented.  In general, the optimization based 

approaches are more stable and often converge to the global solution. The major 

problem of ANN based approaches are its slow convergence and often stuck in local 

optimum point. Therefore, in present work different optimization based approaches are 

considered. The formulation of the objective function and associated constrained are 

discussed thoroughly.  The comparison of all adopted algorithms on the basis of number 
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of solutions, mathematical operations and computational time has been presented. The 

thesis concludes the summary with contributions and scope of the future research work.   
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Chapter1 

INTRODUCTION 

1.1 Overview 

Over the last few decades, use of industrial robots can be seen worldwide and has 

significantly increased with a faster increasingly trend. Mostly these are being used for 

material handling, welding, painting, assembling of parts, packaging, handling 

hazardous materials, undersea operations, etc. Robot manipulator implicates an 

electromechanical device that requires human dexterity to perform a variety of tasks. 

Although few manipulators are anthropomorphic and humanoid, most of these robots 

can be treated as electromechanical devices from their structure point of view.  On the 

other hand, there are autonomous and semiautonomous robots that have a broad range 

of applications such as planetary space exploration, surgical robotics, rehabilitation, and 

household applications.  

A common characteristic of such applications is that the robot needs to operate in 

unstructured environments rather than structured industrial work cells. Motion control 

and trajectory planning for robots in unstructured environments pose important 

challenges due to uncertainties in environment modelling, sensing, and robot actuation. 

At the present status, the broad area of robot applications deal with industrial robot 

arms operating in both structured and unstructured environments. A first introduction to 

the subject of robotics ought to include a rigorous treatment of the topics in this text. 

Robots are also a concerned with and are slowly becoming a part of human life by 

assisting them in professional and personal life as well as insulating humans from a 

situation involving hazards, discomfort, repetitions, etc. With the advancement of 

various technology, the scope of the tasks performed by robots is widened so that it is 

desirable for machines to extend the capabilities of men and to replace them by robots 

in carrying out at tiresome as well as hazardous jobs. In order to accomplish the tasks in 
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human-like ways and to realize a proper and safe co-operation between humans and 

robots, the robots of the future must be thought of having human excellence in terms of 

its structure,intelligence, smartness and reactions.Therefore, a robot operating under 

some degree of autonomy can be extremely complex electromechanical systems whose 

analytic description requires advanced methods. Design and development of such 

devices present many challenging and interesting research problems. The most 

important thing is reprogramming ability of robot. It is computer controlled that gives 

the robot its utility and adaptability. The so-called robotics revolution is, in fact, part of 

the larger computer revolution. There are many fields for robot manipulators to perform 

a variety of tasks. Some of these are automobiles, household's products, pick-n-place, 

undersea and planetary explorations, satellite retrieval and repair, defusing of 

explosives and radioactive field. In the medical field robotics find applications in 

rehabilitation and surgery that involve kinematic, dynamic and control operations.  

Robot manipulators move along pre-specified trajectories which are sequence of points 

were end effector position, and orientations are known. Trajectories may be joint space 

or Cartesian spaces that are a function of time. The industrial robots can be explicitly 

considered as open chain mechanisms that are systems of rigid bodies connected by 

various joints. Joints allow particular types of relative motions between the connected 

bodies. For example, a rotational joint acts as a hinge and allows only a relative rotation 

between the connected bodies about the axis of the joint. A system of rigid bodies 

interconnected by joints is called a kinematic chain. Individual rigid bodies within the 

kinematic chain are called links. A kinematic chain can be serial, parallel, or serial, and 

parallel combined, i.e. the kinematic chain can be open, closed, or branched. It is 

required to compute all the necessary points in Cartesian coordinate to perform the 

smooth operation. The conversion of trajectory locations from Cartesian coordinates to 

joint coordinates is referred to as the inverse kinematics problem.  

Even though industrial robots are in the advanced stage, some of the basic problems in 

kinematics are still unsolved and constitute an active focus for research. Among these 

unsolved problems, the direct kinematics problem for parallel mechanism and inverse 

kinematics for serial chains constitute a decent share of research domain. The present 

research work primarily focuses on Kinematics of various industrial manipulators 

different configurations. The inverse kinematics problem is fundamental, not only in the 

design of manipulator but also in other applications including computer animations and 

molecular modelling. This problem is difficult due to its inherent computational 

complexity (i.e. NP-hard Problem) and due to mathematical complexity that does not 

guarantee closed form solution.  
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1.2 Evolution of robot manipulators 

The concept of the robot was evidently recognized by the Czech playwright Karel 

Capek during the twentieth century in his play ―Rossum‘s Universal Robots (R.U.R.)‖. 

The term ―robot‖ is derived from ―robota‖ which means subordinate labour in Slave 

languages. In 1940, the ethics of the interaction between robots and humans was 

envisioned to be governed by the well-known three fundamental laws of Isaac Asimov, 

the Russian science-fiction writer in his novel ―Run-around‖.  

The middle of the twentieth century brought the first explorations of the connection 

between human intelligence and machines, marking the beginning of an era of fertile 

research in the field of artificial intelligence (AI). Around that time, the first robots 

were realized. They benefited from advances in the different technologies of mechanics, 

controls, computers and electronics. As always, new designs motivate new research and 

discoveries, which, in turn, lead to enhanced solutions and thus to novel concepts. This 

virtuous circle over time produced that knowledge and understanding that gave birth to 

the field of robotics, properly referred to as the science and technology of robots. 

The early robots built in the 1960s stemmed from the confluence of two technologies: 

numerical control machines for precise manufacturing, and tele-operators for remote 

radioactive material handling. These master slave arms were designed to duplicate one-

to-one the mechanics of the human arm and had rudimental control and little perception 

about the environment. Then, during the mid-to-late twentieth century, the development 

of integrated circuits, digital computers and miniaturized components enabled 

computer-controlled robots to be designed and programmed. These robots, termed 

industrial robots, became essential components in the automation of flexible 

manufacturing systems in the late 1970s. Further to their wide application in the 

automotive industry, industrial robots were successfully employed in general industry, 

such as the metal products, the chemical, the electronics and the food industries. More 

recently, robots have found new applications outside the factories, in areas such as 

cleaning, search and rescue, underwater, space, and medical applications. 

In the 1980s, robotics was defined as the science that studies the intelligent connection 

between perception and action. With reference to this definition, the action of a robotic 

system is entrusted to a locomotion apparatus to move in the environment (wheels, 

crawlers, legs, propellers) and/or to a manipulation apparatus to operate on objects 

present in the environment (arms, end effectors, artificial hands), where suitable 

actuators animate the mechanical components of the robot. The perception is extracted 

from the sensors providing information on state of the robot (position and speed) and its 

surrounding environment (force and tactile, range and vision). The intelligent 

connection is entrusted to a programming; planning and control architecture that relies 
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on the perception and available models of the robot and environment and exploits 

learning and skill acquisition. 

In the 1990s research was boosted by the need to resort to robots to address human 

safety in hazardous environments (field robotics), or to enhance the human operator 

ability and reduce his/her fatigue (human augmentation), or else by the desire to 

develop products with wide potential markets aimed at improving the quality of life 

(service robotics). A common denominator of such application scenarios was the need 

to operate in a scarcely structured environment that ultimately requires increased 

abilities and a higher degree of autonomy.  

By the dawn of the new millennium, robotics has undergone a major transformation in 

scope and dimensions. This expansion has been brought about by the maturity of the 

field and the advances in its related technologies. From a largely dominant industrial 

focus, robotics has been rapidly expanding into the challenges of the human world 

(human-cantered and life-like robotics). The new generation of robots is expected to 

safely and dependably co-habitat with humans in homes, workplaces, and communities, 

providing support in services, entertainment, education, healthcare, manufacturing, and 

assistance. 

Beyond its impact on physical robots, the body of knowledge robotics has produced is 

revealing a much wider range of applications reaching across diverse research areas and 

scientific disciplines, such as: biomechanics, haptics, neurosciences, and virtual 

simulation, animation, surgery, and sensor networks among others. In return, the 

challenges of the new emerging areas are proving an abundant source of stimulation 

and insights for the field of robotics. It is indeed at the intersection of disciplines that 

the most striking advances happen. Practical implementation of industrial robots was 

first started during the 1960s, along with numerical controlled and CAD/CAM systems. 

Now a day these manipulators reached the maturity stages. Some of the landmark 

developments in industrial robots are mentioned with this [1]:  

1947 –The first servo controlled electric tele-operator launched 

1948 –Introduction of force feedback in tele-operator 

1954 –First programmable design from George Devol  

1956 –Foundation of Unimation company by Josh Engelberger the Unimation 

Company 

1961 –General Motors implementation of Unimate robot in New Jersey  

1963 –First vision system developed for robots 

1973 - Stanford University developed robot arm 
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1974 –First computer controlled manipulator introduced the MilacronT3 

1978 –Development of PUMA 6 axis robot  

1979 –First assembly line SCARA robot designed by Japanese  

1981 - Mellon University developed first direct drive manipulator  

1989- Hi-tech chess playing robot  

1996 - Concept of Honda's P2 humanoid robot  

1997 - Mars space exploration robot sojourner rover  

2001 - Canadarm2 was implemented into ISS 

2002- Introduction of humanoid robot ASIMO  

2004 - Cornell University exposed a robot skilled of self-replication 

2005- Development of wireless operated and computer controlled HUBO robot by 

KIST 

2006- Starfish 4-legged robot developed by Cornell University  

2007- Japanese company introduced entertainment robot TOMY 

2013-to present- Kuka Robotics LBR iiwa, a lightweight robot Rob coaster for 

entertainment 

Today, new communities of users and developers are forming, with growing 

connections to the core of robotics research. A strategic goal for the robotics 

community is one of outreach and scientific cooperation with these communities. 

Future developments and expected growth of the field will largely depend on the 

research community‘s abilities to achieve this objective. 

1.3 Structure of industrial robots 

This section is devoted to the classification of industrial robots, with attention to serial 

structures. Basic criteria for classification have been addressed stepwise, and concern 

mathematics behind the mechanism has also been proposed. The major aim is restricted 

to robots that are mainly anticipated for manipulation tasks and serial kinematic chains. 

Robots can usually be classified as per their number of degree of freedom (dof) or axes 

and their kinematic characteristic. Working proficiencies of robot manipulator can be 

evaluated from its degree of freedom. Common 6-dof robot manipulator can only 

achieve a general task in 3-dimension space containing arbitrarily position and 

orientation for any object. On the other hand, for specific application one needs to 

design robot manipulator as per dof as well as kinematics characteristic. However, there 
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are numerous criteria for the classification of robot manipulator but typically one can 

select dof or number of axes. On the other hand, Robotics Institute of America (RIA), 

Association Francaise de Robotique (AFR) and Japanese Industrial Robot Association 

broadly classified in 6 diverse modules that are as follows: 

1. Manual handling devices 

2. Fixed sequence robot 

3. Variable sequence robot 

4. Playback robot 

5. Numerical control robot 

6. Intelligent robot 

Other than these above mentioned modules of industrial robot manipulator it can also 

be classified as per their mechanism, dof, actuation, workspace, control, motion and 

application.  

1.3.1 Classification by mechanism 

Typically a robot manipulator may be either a serial one having open loop or a parallel 

one having closed loop structure. In industrial robot manipulators the joint type may be 

either prismatic (P) or revolute (R) whereas the link type may be either rigid or flexible. 

Moreover, there can be hybrid structure that consists of both open and closed loop 

mechanical chains.The serial manipulator can be categorized based on the first joint 

will always starting from the fixed base and end of the link will free to move in space, 

see Figure 1.1 (a). There are many combinations of these joints and links that creates 

different configurations of robot manipulator simply due to the joints R and P, axes of 

two adjacent may be either parallel or orthogonal. Orthogonal joints intersect by 90 

degrees with respect to their common normal and it can be parallel when one axis 

rotates 90 degrees, see Figure 1.1(b).  

 

 

 

 

 

 

Figure 1.1 (a) Serial [1], (b) Parallel [1] and (c) Hybrid mechanisms  

Examples of serial manipulators are PUMA, SCARA, KUKA, DENSO etc., Gough 

platform, Delta robot, 3−RPR planar parallel robot etc., are parallel manipulators and 

(a) 

  

(b) (c) 
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Fanuc S-9000W is an example of hybrid manipulator as shown in Figure 1.1(c).Figure 

1.1 shows further examples of mechanisms that result from open, closed and hybrid 

open/closed kinematic chains. Robotics and living organisms resemble the 

serial/parallel or hybrid mechanism. The most common and well known example is the 

human hand that resembles as a serial, parallel and hybrid manipulator as shown in 

Figure 1.2. 

The human arm frame consists of different number of bones, as shown in Figure 1.2 

that creates serial/hybrid manipulator or the kinematic chain. The human shoulder is 

attached to the stem having spherical joint. In the later chapter, human arm has been 

considered only 7-dof serial manipulator as shown in Figure 1.2 (a). The clavicle joint 

is connected to stem depicted as S in Figure and also with scapula via acromioclavicular 

joint (A). The scapula joint later connected with glenohumeral joint (G) to the upper 

arm. A summarized exemplary of arm mechanism identical to shoulder is shown in 

Figure 1.2 (b).  

 

 

 

 

 

 

 

Figure 1.2 Human arm structures [1] 

As per depicted figure the arm manipulator structure have 11-dof. The upper arm with 

humeral bone can be assumed as a serial mechanism and elbow joint with a humeral 

bone that connects the ulna can be considered as a parallel manipulator. 

 

 

Figure 1.3 Joint rotations of 7-dof robotic arm 

P 
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) 

(b

) 
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Most of the manipulator or common industrial manipulators are based on the above 

discussed human arm mechanism. As per Figure 1.3 is the elaborated view of the 

human arm with 7-dof manipulator that includes the shoulder, elbow and wrist.  

1.3.2 Classification by degree of freedom and related components 

The specific motion of links related to any mechanism or machine can be defined as the 

degree of freedom. To execute specific task degree of freedom will always play the 

main role. The total number of dof will always equal the number of independent 

displacement of links. As we know that 6-dof robot manipulator is the basis to execute 

the specific task in 3-dimentional space. On the other hand, mathematical definition of 

degrees of freedom will be a minimum number of independent joint parameters of any 

mechanism that exclusively describe the spatial position and orientation of 

system/body. On the other hand, no. of dof in any mechanism can be obtained by 

summation of the available dof of moving links that would be then λN. This is no. of 

dof if there are no joints and from this we can subtract the constraint iC . Now this can 

be expressed as follows     





n

1i

iCNdof                                                        (1.1) 

Where, a constraint  ii fC   that is the difference between the potential dof (  ) and 

no. of dof permitted by joint (f).  Suppose there are f independent joint variables 

associated with a joint. We would propose that the joint permits f degrees of freedom.  





J

1i

iF)1JN(dof

    (1.2)

 

This is known as Grübler‘s formula for the degree of freedom. Where N is a number of 

links including fixed or base link, J is no. of joints Fi is dof at the i
th

Joint.  

 

mechanismsandrmanipulatoplanarfor3

mechanismsandrmanipulatospatialfor6
   (1.3) 

A rigid body moving freely in 3-Dimensional space contains 6-dof and its position in 

the space can be separated with three positional and three orientational coordinates, i.e. 

λ = 6 parameters as given in equation (1.3). But in case if λ = 3 dof then there will be 

two positional and one orientational coordinate will be there to explain. In this context 

we can explain no. of dof in case of rotational joint, for example in this joint we know 

f=1 and λ = 6 therefor c=6-1=5, means rotational joint reduces 5 dof of relative 

movement between two links.  

The no. of dof's permitted by a joint and their characteristic can be determined by the 

design constraints imposed on body or link. There are many different types of joints as 
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shown in Table1.2. Among these different types of joint the two common joints that 

permit f=1 dof and c=5 constraints in spatial motion or another c=2 constraints for 

planar motion. From Table1.1 basic notations for joints are given for example revolute 

and prismatic joints can be denoted as R and P. These joints can be described by a unit 

vector, which defines their axis of either rotation or translation. For example, revolute 

and prismatic joints having one dof while cylindrical and Hooke joints contain two 

degrees of freedoms. The diversity of joints in many mechanisms is larger, but these 

joints are commonly used in the field of robotics.  

Table 1.1 Different types of joints 

In cylindrical and screw, joint translation takes place in d direction and rotation is about 

the coincident axis with an angle θ. Wherein, joint translation and rotations θ and d are 

independent parameters. Hence c will be 4 and f=2. Therefore, independence of screw 

joint can be explained with the relation between d , where and   are the 

variations of joint and is pitch of the screw. Although screw joint is having two 

Joints/Pair Symbol dof Representation 

Revolute R 1 
 

 

Prismatic P 1  
 

Screw H 1 

s 

Cylindrical C 2 

 

Hooke joint T 2 

 

Spherical S 3 

 

Planar E 3 
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independent joint parameters and one joint either θ or d, therefore in this case f will be 1 

and c=5. Similarly, other joints can be elaborated as per the degree of freedom and 

imposed constraints. These notations and representations have been adopted throughout 

the text.  Therefore on the basis of dof the robots can be classified as follows: 

a) General manipulator 

General robots can normally have 6-dof due to the vast application in various 

fields. There are many robots which possess 6-dof for example Fanuc S-900W, 

where last three joint axes intersect at the wrist centre. The kinematics solution 

for this class of manipulator can be separately solved considering first three 

links and then last three links can be solved independently. A therefor solution 

of inverse kinematics will be much easier than the other class of manipulators.     

b) Redundant/hyper redundant manipulator 

Kinematic redundancy of any mechanisms arises when it has more dof than 

those rigorously necessary to perform a desired task. Most of the industrial 

application can be executed by 6-dof but if it is 7-dof robot manipulator, it can 

be considered as the distinctive example of inherent redundancy. It is not always 

necessary that the robot with more dof will be redundant, but sometimes it 

occurs for less dof for specific tasks, such as simple manipulator tool positioning 

without having constraints for the orientation. Hyperredundant manipulators for 

any mechanism occur when it has a larger number of joints. Its joint 

configurations dof are exceeded to its task space dof. Therefore, 7-dof or 8-dof 

spatial manipulator usually not considered as a hyperredundant manipulator. A 

typical example of hyperedundant is snake robot. In fact, redundant 

manipulators are mainly used due to its increased dexterity; it may tolerate 

singularities, joint variable limits, and obstacle avoidance, but also for 

minimizing torque/energy for a given task.  

c) Flexible manipulator 

The standard hypothesis relating robot kinematics, design of manipulator and 

dynamics is that robot manipulator generally comprises of rigid links and 

transmission components. However it can be assumed as standard condition for 

general application which may be effective for less payloads or less interacting 

forces and slow motions. Practically speaking, flexible robot manipulator can be 

useful due to the reduced weight of moving links and slender design of links as 

well as use of compliant transmission elements. This concept of flexibility 

usually having major application in the area of space robot because of very long 

links of manipulator further requires resolution of time with respect to elastic 

deformations and also inferior link weight to payload ratio along with the 
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enhanced energy efficiency. On the other hand, in case of medical surgery or 

nuclear hazard applications tele-operated manipulators depicts similar concept 

like space manipulator.  

Therefor it can be understand that in case of flexible robot which is having less 

control inputs as compared to number of dof which explains the design control 

parameters for flexible manipulator is more difficult than rigid link manipulator. 

Moreover, the execution of a whole system will definitely requires more number 

of sensors. Among these limitations the flexible robot manipulator unlikely used 

in various industrial applications due to the benefits of inertial decoupling of the 

joint actuator and the link, reduced in kinetic energy consumptions and 

undesired collisions offered by obstacles as well as humans.  

d) Deficient manipulator 

A robot is called deficient robot if it possess less than six degrees of freedom 

and it cannot positioned or orient freely in space, Adept-one SCARA 

manipulator is an example of deficient robot. 

1.3.3 Classification by actuation  

Actuators are basically transmitting power as a motion to drive rigid or flexible links 

attached to any mechanism or manipulator. Actuators can be categorized mainly as 

electrical, pneumatic and hydraulic. There are other types of actuation can be 

considered as shape memory alloys (SMA), piezoelectric, magnetostriction and 

polymeric. Among all considered actuators the basic and most preferred actuators are 

electric which are powered by AC or DC motors because of their cleaner, precise and 

quieter operations as compared to other actuators. Electric drives are more efficient and 

precise at high speed because of gear box used and also in case of stepper motor precise 

motion and high torque are possible.  However, for high speed and heavy load carrying 

capacity electric motors does not support as compared to hydraulic or pneumatic 

actuators. Hydraulic drives are reasonable because of their high speed and efficient 

torque or power ratios. Therefore, hydraulic actuators focused manipulators are mainly 

used for lifting heavy loads. Major drawbacks of hydraulic actuators are noisiness, 

leakiness of fluid used and heavy pumps.  Besides hydraulic actuated manipulator 

Pneumatics actuators are similar but it does not having precise motion and difficulty in 

control of end effector.   

1.3.4 Classification by workspace 

In general, workspace of any manipulator can be defined as the total volume covered by 

the end effector as the manipulator finishes maximum possible movements. Workspace 
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can be determined by the limits of joint variables and geometry of the manipulator. 

There are basically two types of work spaces which are reachable and dextrous; 

reachable workspace can be understand by the total locus point traced by  end effector 

and subset of these traced point of end effector while giving arbitrary orientation is 

known as dextrous workspace. But practically dextrous workspace is suitable only for 

idealized geometries and generally it does not possess for industrial manipulators. The 

above mentioned configurations and their corresponding workspaces are given in Table 

1.2. 

Table 1.2 Configurations and workspace 

 

a) Cartesian robot 

Cartesian robots are also known as gantry robots, having three orthogonal 

arrangements of prismatic joints as shown in Table 1.2.  Position of wrist centre 

point of Cartesian robot can be appropriately determined by associated 

coordinate with the three prismatic joints. Workspace of Cartesian manipulator 

Types of robot Structure Joint type Shape of the workspace 

Cartesian  

 

P-P-P 

 

Cylindrical  

 

R-P-P 

 

Spherical  

 

R-R-P 

 

Revolute  

 

R-R-R 
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will be rectangular or cube in shape, so that performed work will always be 

within the space of joint motion. The robot configuration will be PPP linearly 

arranged three mutual axes, and the motion will be in X, Y and Z direction.  

b) Cylindrical robot 

Cylindrical robot will possess at least one revolute joint along with two 

prismatic joints (RPP) that completely creates cylindrical coordinates of end 

effector. The workspace of this configuration is limited by two concentric 

structure of cylinder of finite length as shown in Table 1.2. This robot comprises 

of one revolute joint in base and other two joints having linear motion along Z 

and Y directions.  First joint of rotation along Z direction gives advantage to 

move rapidly and efficient pick and place operation in assembly.   

c)  Spherical robot 

Spherical robots having first two joints revolute with intersecting axes and last 

joint will be linear or prismatic joint (RRP) that resembles spherical coordinates 

of all three joints. The workspace of this robot is limited by two concentric 

spheres as shown in Table 1.2. First link rotates along the Z-direction with the 

base and second joint rotates in Y-direction while last joint moves left and right 

linearly overall crates sphere envelope.   

d)  SCARA robot 

SCARA (Selective Compliance Assembly Robot Arm) robot manipulator is 

basically designed for assembly tasks as it provides vertical axis rigidity and 

compliance in the horizontal axis. It mainly contains three revolute (3-dof 

revolute) and one prismatic (P) joints altogether known as RRRP manipulator as 

sown in Figure 1.4. In this type robot first three joints are parallel to each other 

and having downward direction gravity. This manipulator is used mainly in 

aeroplane parts and electronic parts assemblies. Adept one and SCARA AR-

i350 is the example of this robot configuration.  

 

Figure 1.4 SCARA robot 
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The major advantage of this manipulator is small installation area and works as 

higher dof manipulator. The minimal acquired area of this manipulator design 

leads to minimizing cost and maintenance. However, having less dof or joints 

will be limitations for real world application in addition with singularity, 

obstacle avoidance and limited workspace.  

e)  Articulated/revolute manipulator 

A robot manipulator having all three joints revolute (RRR) is said to be 

articulated or anthropomorphic manipulator.  The anthropomorphic resembles 

the design of human hand that includes shoulder, waist and elbow joints. The 

workspace of this type of robot is quite complex, mainly crescent-shaped cross-

section. This can swept the volume in space bounded by spherical outer surface 

and consisting scallops of inner surface to the constraint joints. Very well-

known examples of this category are PUMA, KUKA, DENSO, IRB 6 etc as 

shown in Figure 1.5. This type of manipulator generally having 6-dof consisting 

first three revolute joint in X, Y and Z axes and last three joint will be pitch, 

yaw and roll.  

 

Figure 1.5 Revolute robot 

Many serial manipulators are designed in regional and orientational structure so 

that it can overcome the complexity of kinematic analysis. The joint variables in 

regional structure will help for major displacement or positioning  of end 

effector but in case of prismatic joint its doesn‘t support for orientation of end 

effector. Now the revolute manipulators can also be classified as type A1, A2, 

B1, B2, C and D. The structures of the types of robots are shown in the Figure 

1.5. Examples of different types of robot are given in Table 1.3. 
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Table1.3 Configurations of 6-dof revolute manipulators 

1.3.5 Classification based on regional structure 

In case of regional structure of manipulator determines the major displacement of end 

effector having three degrees of freedom. Now let us observe the first regional part of 

manipulator. In this regional part of manipulator both rotational and translational can be 

Orientation structure 

 

 
Regional structure 
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used to position the end effector of manipulator. The direction of axes can be arbitrarily 

in space. But good practice is to position of mechanism will always be parallel joint 

axes along with fixed joint coordinate frame x,y and z. Therefore the translation and 

rotation can be represented as Rx, Ry, Rz and Px, Py, Pz, (see Table1.4). This 

representation can make 6
3
 possible combinations of these six joints. whereas it is not 

always important that it could make spatial mechanism for example PxPxPx or PxPyRz 

combinations cannot move in at least in one  direction of the x, y and z axis. So to have 

spatial mechanism it is required to have motion in all three directions. Therefore motion 

of a single joint should always be independent of other two joint motions.    

Table 1.4 Classification based on regional structure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure1.6  Regional mechanism of robot manipulators (a) PRP cylindrical manipulator, 

(b) PPP Cartesian manipulator, (c) PRR SCARA manipulator, (d) RRP spherical 

manipulator and (e) RRR revolute manipulator. 

As per Table 1.4, only few of these combinations are used to form industrial 

manipulator. In general there are five types of positioning mechanism are found in 

industrial manipulator as shown in Figure 1.6.  Another part of manipulator is 

orientation part that is required to have at least 3-dof joints to achieve desired task and 

combination of three rotations variables can yield 27 different configurations of wrist. 

However, configuration with consecutively perpendicular axes can be considered as 

Different configurations 

RxRxRy RxRxRx RxPxRy RxPyPx PxRxPz 

RxRxRz RxRyPx RxPxRz RxPzPx PxRyPy 

RxRyRz RxRyPy RxPyRy PxRxRx PxPyRx 

RxRyRy RxRyPz RxPyRz PxRxRy PxPyRy 

RxRyRz RxRzPx RxPzRy PxRxRx PxPyPz 

RxRzRx RxRzPy RxPzRz PxRyRx  

RxRzRy RxRzPz RxPxPy PxRyRz  

RxRzRz RxPxRx RxPxPz PxRxPy  

  

 P 

P 

R 

(a) 

 

 P 

P 
P 

(b) 

 P 

R 

R 

(c) 

P 

  
R 

R 

(d) 

  
R 

  
R 

R 

(e) 
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shown in Figure 1.6. In case the first rotation is about x axis then next alignment of axis 

should be in y or z axis direction. If the next rotation is about y axis, then last axis of 

rotation should be about z or x axis. Considering these criteria there can be 12 different 

configurations, only the difference will be there on the basis of attachment orientation 

with moving link of the manipulator.  

1.3.6 Classification by motion characteristics 

Robot manipulators can also be classified according to their nature of motion such as; 

Robot manipulator can possess three different characteristics of motion namely planar, 

spherical and spatial. A manipulator will be known as planar if the joint associated with 

the links arbitrary translates and rotates in the plane. In planar manipulator all moving 

links performs planar motion that is all joint axis are parallel to each other. Prismatic 

and revolute joints are only allowable lower pairs for planar mechanism. The motion of 

planar joints are limited to SE (2) group, considered as a 3D subgroup of SE (3). But in 

case of spherical manipulator all the links accomplish spherical motion with respect to 

common fixed point and all other motion of joints can be determined by the radial 

projection of unit sphere. Revolute joints are limited to the construction of spherical 

linkage that can be used as pointing device. On the other hand, manipulator moving in 

3-dimentional space or belongs to SE (3) group and possesses three coordinates is said 

to be spatial manipulator.  Based on the observation of growing trend of industrial 

manipulator application the commonly used manipulator are spatial.       

1.3.7 Classification by application 

Regardless of structure, dof and workspace, manipulator can also be categorized as per 

their application. It can be classified as follows; 

a) Assembly robot manipulator 

b) Underwater 

c) Space  

d) Agriculture  

e) Mining 

f) Surgical and rehabilitation 

g) Domestic 

h) Educational 

In case of assembly robot manipulator the major application will always pick and place, 

loading/unloading, welding, painting, inspection, sampling, manufacturing etc. As per 

configuration and design, mostly industrial robots are anthropomorphic, which includes 

shoulder, an elbow and wrist. Therefore, finally most of the manipulator possesses 6-
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dof to achieve desired position and orientation the basic difference is the application. 

The basic objective of manipulator is to have high resolution, energy efficient and can 

carry maximum load. Hence, all distinguished manipulator possesses different 

kinematic structures.  

1.4 Basic kinematics 

This section discussed some basics of kinematics of rigid body and further introduced 

different types of mechanism and parameters associated with it.  Kinematic Chain may 

consist of rigid/ flexible links which are connected with joints or kinematics pair 

permitting relative motion of the connected bodies. For example, a rotational joint acts 

as a hinge and allows only a relative rotation between the connected bodies about the 

axis of the joint. The relative movements allowed by a joint are referred to as the joint 

variables or the internal coordinates. The rotational joint has only one joint variable and 

that is the relative rotation between the connected bodies.  

As we know about the different types of kinematic chains for example serial, parallel or 

hybrid which may be open, closed or branched. For the positioning of end effector or 

base it is required to have understanding of kinematics of rigid body systems. The 

design of the links and joints of any mechanism decides the orientation or positional 

properties that affect the overall kinematic chain. There are basically two types of 

kinematics of any mechanism namely forward kinematics and inverse kinematics. The 

forward kinematics problem is concerned with the relationship between the individual 

joints of the robot manipulator and the position and orientation of the tool or end-

effector. The forward kinematics of any manipulator or mechanism can be determined 

with given joint variables that yield the position and orientation of end effector. The 

joint variables may be revolute or prismatic depending of types of joints used. On the 

other hand the second problem of kinematic is resolution of inverse kinematics. Inverse 

kinematics can be defined as resolution of joint variables in terms of given end effector 

position and orientation.    

Systematic and generalized ways of kinematic analysis are vectors and matrix algebras 

that represents and describe the location of end effector and joint variables with respect 

to defined reference frame. As we know that the joints can be rotate or translates so 

there is basic matrix algebra known as 3X3 rotation matrix is used to resolve the 

position and orientation of end effector or tool. This rotation matrix further modified 

with 4X4 homogeneous transformation matrix to evaluate the translation of the links in 

3-dimentional space. This representation concept was first applied by Denavit-

Hartenberg.  
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The second problem associated with robot manipulators is inverse kinematic solution. 

In order to calculate the exact position and orientation of the end effector of robot 

manipulator to reach its task the inverse kinematics solution is mandatory. The inverse 

kinematics of manipulator is essential not only for design synthesis but also to reach 

desired position. The major problem associated with inverse kinematic formulations is 

computational and mathematical complexity due to higher degree of polynomial half 

tangent equations which does not guarantee closed form solution. This problem is main 

area of research now a day in the field of animations and molecular mathematical 

modelling. Overall it can be summarized that there are two basic problems of 

kinematics which are forward and inverse kinematics.   

 Now is it significant to describe different parameters that create kinematic and 

mathematical modelling of various manipulator of any mechanism. This section pertain 

only brief introduction of  degree of freedom (dof) and various types of joints that 

altogether conclude the mechanism of a system without considering any forces/torque. 

In the later chapter different methodologies to obtain kinematics solutions will be 

discussed in detail.  

1.5 Motivation 

As we know that in the track of kinematic analysis, rotational, translational, DH-

algorithm and homogeneous matrices have shown their importance in the application of 

positional analysis of different manipulators. From many decades these method have 

been adopted by various researchers and implemented in different number of 

manipulators. However, ensuring the absence of proper mathematical formulations with 

less computational and mathematical cost which leads to decreasing in many 

applications, where quick calculations are required. These techniques fail to prove when 

the manipulator having higher number of dof's. In general when there are higher dof 

manipulator the inverse kinematic formulations are much more difficult due to non-

linear, time varying and transcendental functions. There are many other tools and 

techniques are available to solve inverse kinematic problem for example algebraic, 

Jacobian, or geometric, analytical, pseudo inverse Jacobian etc. These methods are 

conventional and they do not provide exact solution. On the other hand, alternative of 

these techniques for representing and solving kinematics problem are quaternion 

algebra, Lie algebra, exponential algebra, epsilon algebra and screw theory which are 

being used from many years due to less mathematical operations. So the quaternion 

algebra is much more powerful method for resolving kinematic problem of any 

manipulator. Quaternion can be used for rotation as well translation of rigid body in 

Euclidian space.   
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Considering the complexities involved in the process of modelling and consequently 

solving the inverse kinematic problem for achieving precise, optimized and faster 

solution for real time application. The present research problem in design, the research 

issues will primarily focus on selecting/developing an appropriate tool for achieving the 

objectives after validating them on various configurations of industrial robots. 

On the other side of these conventional techniques, intelligent or soft computing 

techniques are widely used to find out the inverse kinematic solutions. This intelligent 

technique includes artificial neural network, hybrid ANN, fuzzy logic, hybrid fuzzy, 

metaheuristic algorithms and biologically-inspired approaches. In past decades, many 

others have adopted these technique because of their less computational and 

mathematical cost. These techniques are useful when the manipulator having higher 

number of dof's where generally conventional method fails. So the ultimate goal of this 

dissertation is to find out inverse kinematic solution using these techniques and to 

develop novel method for resolving inverse kinematic problem for any configuration of 

robot manipulator.    

1.6 Broad objective 

The major objective of this dissertation is to resolve inverse kinematic problem. As per 

survey and analysis of various literatures in this field of manipulator kinematics 

recommends that there is obvious requirement of some novel technique for solving 

higher dof manipulator kinematics. It is also requires to produce inverse kinematic 

solution efficiently and should be capable of online control of manipulator. Therefore, 

this work is planned with following major objectives:   

1) To carry out critical study of different tools and techniques suitable for solving 

inverse kinematic problems. 

2) To develop the inverse kinematic model of various robot manipulators and to 

adopt some existing techniques for solution of inverse kinematics of selected 

robot manipulator configurations. 

3) Development of new algorithm and mathematical model for resolving and 

simulating inverse kinematics.  

4) To analyze the efficiency of newly developed method and comparison with the 

obtained solution through other existing techniques. 

5) To recommend the appropriate techniques for solving inverse kinematics 

problem for various application. 
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1.7 Methodology 

Kinematic analysis and synthesis of planar or spatial manipulators always need to 

follow through the nonlinear equations which can be complex and time consuming. The 

conventional methods are less efficient which can be the greater objective for any 

researcher to develop novel method to overcome the stated problem. Considering the 

above stated objective, kinematic relationship and mathematical modelling is required 

to develop. Therefore, to accomplish the aforesaid major objectives of this research 

work and to resolve perfect solution of inverse kinematic one should develop efficient 

method. The adopted methods and steps for achieving objective have been planned as 

follows:   

 Review of literature: Considering various configurations of revolute and 

prismatic joints of manipulators and their classification on the basis of their 

structures, mechanism, actuations, workspaces, motion properties, applications 

etc. have been studied. Analysis of the literature survey with the prime 

importance of mathematical modelling and kinematics analysis of robot 

manipulator along with the problem associated with the developed techniques 

has been done. Literature review has been done related to different methods like 

algebraic, analytical, intelligent techniques and optimization algorithms etc.  

 Configurations of manipulator: On the basis of literature survey it has been 

deliberated their outcome and associated problem so as to select appropriate 

model of manipulator. Starting from 3-dof manipulator up to 7-dof redundant 

manipulator has been taken for the resolution of inverse kinematic. Different 

configurations for 3-dof manipulator and 6-dof revolute manipulator have been 

proposed and among them few configuration has been selected for kinematic 

analysis.    

 Mathematical modelling and kinematic analysis: Different configurations of 

robot manipulator have been considered and their mathematical modelling is 

presented. All considered manipulator belongs to the category of serial 

manipulator and different configurations for 6-dof and 3-dof manipulator has 

been analysed. Denavit-Hartenberg algorithms have been used for kinematics 

formulation and simulation of different joint configurations of robot manipulator 

and later the obtained solution of inverse kinematics has been compared with 

quaternion algebra. The forward and inverse kinematics of adopted 

configurations has been done along with their workspace analysis and detailed 

derivation of kinematics.   

 Intelligent approach: Artificial neural network (ANN), fuzzy logic and hybrid 

techniques from the soft computing domain have been widely used in last 
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decades. These intelligent techniques do not required higher mathematical 

formulation and are capable of solving NP-hard, nonlinear and higher degree of 

polynomial equations. As per review of literature different models of ANN, 

adaptive neural fuzzy inference system (ANFIS) has been adopted for the 

resolution of inverse kinematics of robot manipulator. Although these intelligent 

techniques are not new in this field but few selected models of ANN along with 

ANFIS and hybrid ANN methods has been adopted for the comparison. There 

are different optimization techniques like Particle swarm optimization (PSO), 

genetic algorithm(GA), artificial bee colony (ABC), biogeography based 

optimization(BBO), teachers learners base optimization(TLBO) etc. have been 

applied for training of multi-layer perceptrons (MLP) neural network for the 

prediction of invers kinematic solution of robot manipulator.  

 Optimization algorithm: Different optimization algorithms like GA, BBO, PSO, 

TLBO and ABC have been adopted for the solution of inverse kinematic of 

robot manipulator and novel Crab intelligence based optimization algorithm 

(CIBO) has been proposed. These algorithms are compared with new developed 

CIBO algorithm. These adopted optimization algorithms does not requires any 

computation of Jacobian matrix only it needs forward kinematic equations 

which can be easily developed.  

 Discussion and recommendations: Conversation about the results obtained 

through the adopted methods and proposed method for robot manipulator 

kinematics. Simulation results for kinematics and workspace analysis have been 

addressed. Future recommendations for the adopted configuration of 

manipulator and scope of the future work considering improvements of the 

quality and efficiency are given.  

 

1.8 Organization of the thesis 

Current chapter 1 is the Introduction part of the dissertation that provides brief 

description of history of evolution of robots, types of manipulator, classifications and 

application in various fields. Forthcoming chapters apart from introduction chapter are 

organized as follows:    

Chapter 2 delivers review of literature on the basis of various aspects of the robot 

manipulator like mechanism, actuation, workspace analysis, motion types, different 

components considered, application, intelligent controls and optimization. Some of the 

significant literatures are summarized in table and brief explanations of the outcome 

and deficits with respect to manipulator and configurations are discussed. Finally the 
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objectives of the research work are determined and explained on the basis of literature 

analysis.  

Chapter 3 provides the brief description of selected configurations of industrial 

manipulators for inverse kinematic analysis. In later section, different methodologies to 

solve inverse kinematic problem is discussed in brief.  

Chapter 4 delivers the kinematic analysis and mathematical modelling of various 

configurations of robot manipulator. A brief discuss of various conventional techniques 

like algebra, analytical method, iterative method, numerical method, geometric method, 

homogeneous matrix, DH algorithm and quaternion algebra are presented. 

Classification of 3-dof and 6-dof serial manipulators along with DH parameters and 

their mathematical modelling has been discussed. The inverse and forward kinematics 

of adopted manipulator is derived using adopted method.  

Chapter 5 proposes various intelligent techniques like ANN, ANFIS and hybrid ANN 

for the prediction of inverse kinematic solution of robot manipulator. Different types of 

ANN models like multi-layered perceptron (MLP), polynomial perceptron network 

(PPN) and Pi network are explained in brief and their application towards the solution 

of inverse kinematics has been presented. MLP model is hybridized with many 

optimization techniques like GA, GWO, PSO, TLBO and proposed CIBO algorithm to 

increase the performance of MLP network. The end effector position is considered as 

input for the training of ANN models and ANFIS training is also completed similar to 

ANN training. Application of these algorithms and strategies to use ANN and ANFIS is 

addressed.  

Chapter 6 discusses about the adopted optimization algorithms for the solution of 

inverse kinematics of robot manipulators. In this chapter forward kinematics equations 

are used to find out the joint variables of robot manipulator using Euclidean distance 

norm. Crab Intelligence Based novel Optimization algorithm (CIBO) has been proposed 

in detail for the solution of inverse kinematics of robot manipulator. For the comparison 

of the developed optimization algorithm various metaheuristic algorithms are briefly 

explained.  

In Chapter 7 presents the kinematic results achieved through all adopted techniques and 

comparison has been made with other existing techniques. Forward and inverse 

kinematics along with the workspace analysis and joint angle behaviour has been 

addressed and compared. Programmed output in the form of tables and graphs are 

depicted in this chapter.  

Chapter 8 presents the conclusions of the dissertation and future research guidance with 

summary of contribution.   
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1.9 Summary 

In the current chapter, the general synopsis of the different types of robot manipulator, 

classifications, history of developments are presented. Configurations of 6-dof revolute 

manipulators and combination of 3-dof manipulator are presented. The chronological 

progresses of some selected manipulators are presented and also current status has been 

briefed. Basic applications of kinematics and objectives are also discussed in this 

chapter. 
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Chapter 2 

REVIEW OF LITERATURE 

2.1 Overview 

With advancement of robot technology and ever increasing application of robots in 

various walks of life, robotic research has gaining appreciable momentum over the 

years. Newer configurations, smart behaviours, autonomous robotics, high level 

intelligence, uncertainty in environments have been the various areas for researcher in 

robotics. All these areas are naturally connected with the subject of robot kinematics; 

both forward and inverse. Inverse kinematics solution for serial manipulator is difficult 

task, because the solution is not unique due to nonlinear, uncertain and time varying 

nature of the governing equations. There are various software's and algorithms to 

simplify the inverse kinematics of robot manipulator. During 1980s wrist orientation 

was decoupled from the translation by the arm by using wrist axes that intersect with 

the arm axes. But the major problem singularities with the robot arm were no longer 

back driven, it limits with the structure of the manipulator. There are various techniques 

for solving inverse kinematic problem. Since many methods have been presented to 

solve the IK problem such as homogeneous transformation method, geometric method, 

dual number approach and continuation method. However, the problem involves the 

solving of highly non-linear equations. Many papers have presented algorithms giving 

analytical solutions for the Inverse Jacobean. The formulation of the Jacobean matrix 

and its inverse has to be done within a very short span of time for real-time 

implementations. Some mathematical methods (such as MACSYMA, REDUCE, SMP 

and SEGM) are well- known, efficient tools in terms of their speed and accuracy. In the 

area of robotics, researchers such as (Kircanski, 1985 and Vukobratovic, 1986), (Morris 

1987), (Hussain and Nobie, 1985), and (Tsai and Chiou, 1989), have used these kinds 

of tools for deriving the direct kinematics, Jacobian, and reverse Jacobian closed- form 

equations. Analytic solutions, however, are only used for simple robot manipulators.  
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2.2 Survey of tools used for inverse kinematic solution 

Besides above mentioned approaches, researchers are up to developing newer 

techniques which would make the process easier and faster. In the current research 

different methodologies used by researchers have been studied. They are as follows: 

 Analytical solution 

 Iterative solution 

 Geometric solution 

 Quaternion algebra 

 Theory of screws 

 Exponential rotational algebra 

 Lie algebra 

 Artificial neural network (ANN) 

 Hybrid ANN 

 Adaptive neuro-fuzzy inference system (ANFIS) 

 Genetic algorithm 

 Simulated annealing 

 Particle swarm optimization 

 Bee algorithm 

 Fuzzy learning algorithm 

 Neuro-fuzzy 

 Fuzzy-neuro 

Based on a comprehensive survey of literature, a list of some the major work done in 

the area is presented in Table 2.1. 
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Table 2.1 List of some important literatures 

Sl. Year Author Title Type Contribution 

1 1990 
 Funda and 

Paul [2] 

A computational analysis of 

screw transformations in 

robotics 

PUMA 560 

Proposed a representation method based on screw 

displacement and made their comparison on the basis of 

computational cost. In this work they have determined the 

rotational and translation representation of line for the 

application of general displacement of rigid body. They 

have compared four different mathematical 

formulizations which direct affects the rotation and 

translation of rigid body. The proposed methods are dual 

orthogonal matrix, dual unit quaternion, dual special 

unitary matrix and dual Pauli spin matrix.   

2 1990 
 Funda et al. 

[3] 

On homogeneous transform, 

quaternions, and computational 

efficiency  

PUMA 560 

Proposed work is based on the inverse kinematic solution 

of robot manipulator using quaternion vector pair based 

method. In this work the proposed method is applied to 

solve inverse kinematic of the PUMA robot manipulator 

and comparison has been made on the basis of 

computational cost. 

3 1995 Mitsi et al. [4] 
Optimization of robot link 

motion in inverse kinematic 

5-dof 

revolutespatial and 

Proposed inverse kinematic solution of 5-dof redundant 

robot manipulator based on conventional optimization 
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solution considering collision 

avoidance and joint limit. 

redundant  method. In this work penalty function optimization 

method adopted for the problem resolution. Moreover 

forward kinematic solution is done using standard 

analytical method which is later used to formulate the 

objective function for the proposed optimization 

algorithm.  

4 1998 Nearchou [5] 

Solving the inverse kinematics 

problem of redundant robots 

operating in complex 

environments via a modified 

genetic algorithm 

Puma 566 

Proposed inverse kinematic solution of redundant 

manipulator using modified genetic algorithm. They have 

implemented some assumptions; first they considered that 

the manipulator may be redundant and articulated. Then 

the second assumption is that the manipulator is in 

moving object of its workspace, and last assumption is 

that they are not considering dynamics of the 

manipulator. Thereafter, genetic algorithm is used in two 

different manners, first joint displacement (  ) error 

minimization and the second approach is based on 

positional error of end effector.  

5 1999 Ozgoren [6] 

Kinematic analysis of a 

manipulator with its position 

and velocity related singular 

configurations 

6-dof  revolute 

Proposed inverse and forward kinematics of general 6R 

manipulator considering both position and velocity using 

exponential rotation matrix method. They have also 

investigated the singular configuration related to the 

inverse position analysis termed as (POSCs) i.e. position 



     

29 

 

related singular configurations and other with the velocity 

is termed as (VESOs).   

6 2000 
Karlik  and 

Aydin [7] 

An improved approach to the 

solution of inverse kinematics 

problems for robot 

manipulators 

6-dof revolute 

Proposed inverse kinematic solution of 6-dof robot 

manipulator using structured artificial neural network 

based method. In this work they have used DH-algorithm 

to formulate forward kinematic equation so as to 

complete the dataset for training ANN model and the 

adopted ANN model is MLP.  

7 2002 Her et al. [8] 

Approximating a robot inverse 

kinematics solution using 

fuzzy logic tuned by genetic 

algorithms 

2-dof and 4-dof 

planner  

Proposedinverse kinematic solution of 2 and 4-dof planar 

robot manipulator using fuzzy logic together with the 

genetic algorithm. They have used triangular membership 

function for fuzzy logic and center of gravity is used for 

the defuzzification. These parameters are later tunes by 

genetic algorithm for the surety of exact inverse 

kinematic solution.  

8 2002 Rueda [9] 

Manipulator kinematic error 

model in a calibration process 

through 

quaternion-vector pairs 

PUMA 560 

Proposed inverse kinematic solution of PUMA 560 robot 

manipulator using quaternion vector pair based method. 

In this work they have calculated the geometric error for 

each joint variables and link. They have used differential 

algorithm for the resolution of inverse kinematic to 
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achieve they formulated the objective function as position 

error and orientaional error.  

9 2004 
Koker et al. 

[10] 

Study of neural network based 

inverse kinematics solution for 

a three-joint robot 

3-dof revolute 

Proposed inverse kinematic solution of 3R robot 

manipulator using artificial neural network technique. In 

this work forward kinematic is resolved using analytical 

solution which is later used to generate input dataset for 

the ANN training.  

10 2005 Bingul [11] 

Comparison of inverse 

kinematics solutions using 

neural network for 6r robot 

manipulator with offset 

6-dof revolute 

Proposed inverse kinematic solution of 6-dof robot 

manipulator using artificial neural network technique. In 

this work forward kinematic is resolved using analytical 

solution which is later used to generate input dataset for 

the ANN training. Back propagation algorithm is used to 

calculate the output error in this work.  

11 2005 Xu et al. [12] 

An analysis of the inverse 

kinematics for a 5-dof 

manipulator 

PArm 5-dof 

(PRRPP)  

Proposed inverse kinematic solution of 5-dof robot 

manipulator using analytical method. In this work DH-

algorithm is used to resolve the forward and inverse 

kinematic of adopted manipulator later they have 

discussed on trajectory planning and singularity analysis 

of the manipulator. 
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12 2005 Koker [13] 

Reliability-based approach to 

the inverse kinematics solution 

of robots using elman‘s 

networks 

6-dof revolute 

Proposed inverse kinematic solution of 6-dof robot 

manipulator using reliability based artificial neural 

network technique. In this work forward kinematic is 

resolved using analytical solution which is later used to 

generate input dataset for the ANN training. Back 

propagation algorithm is used to calculate the output error 

in this work.  

13 2005 

Mayorga and 

Sanongboon 

[14] 

Inverse kinematics and 

geometrically bounded 

singularities prevention of 

redundant manipulators: an 

artificial neural network 

approach 

3-dof revolute  

planar redundant  

Proposed artificial neural network technique to solve 

inverse kinematics of the 3-dof revolute planar 

manipulator and also calculated the effective 

geometrically bounded singularities prevention of 

redundant manipulators. 

14 2006 
Aydin and 

Kucuk [15] 

Quaternion based inverse 

kinematics for industrial robot 

manipulators with euler wrist 

6-dof revolute 

Proposed inverse kinematic solution of 6-dof industrial 

manipulator with Euler wrist using quaternion vector pair 

method. They have given detail derivation of forward and 

inverse kinematic of RS, RN and NS type robot 

manipulators.  

15 2006 
Hasan et al. 

[16] 

An adaptive-learning algorithm 

to solve the inverse kinematics 

problem of a 6 d.o.f serial 

FANUC M710i  

Proposed adaptive learning plan of ANN for the solution 

of inverse kinematic of 6-dof manipulator. Moreover they 

have tried to resolve singularity and uncertainty problem 
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robot manipulator. of the adopted configuration of the manipulator. In this 

work ANN model have been trained using analytical 

solution of the adopted manipulator. Generated datasets 

using kinematics equations are used to trained and test the 

adopted model of ANN. They have concluded that the 

proposed model of ANN does not need to have previous 

information of the kinematics of the system that learns 

through the ANN model application.  

16 2006 
Tabandeh  et 

al. [17] 

A genetic algorithm approach 

to solve for multiple solutions 

of inverse kinematics using 

adaptive niching and 

clustering. 

3-dof revolute 

Proposed inverse kinematic solutions of 3-dof PUMA 

manipulator for the major displacement propose. In this 

work they have adopted genetic algorithm with adaptive 

niching and clustering. Genetic algorithm's parameters are 

set by adaptive niching method which is later required the 

forward kinematic equations for the solution of inverse 

kinematic of adopted manipulator. Forward kinematic is 

simply calculated by standard analytical method. 

Thereafter for processing the output filtering and 

clustering is also added to the genetic algorithm.  

17 2007 
 Xie et al. 

[18] 

Inverse kinematics problem for 

6-dof space manipulator based 

on the theory of screws 

6-dof revolute 

Presented inverse kinematic solution of 6-dof mechanical 

arm with the application of free flying space using screw 

algebra based method. In this work they have completed 

the simulation model for adopted manipulator along with 
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kinematic analysis.  

18 2007 
Husty et al. 

[19] 

A new and efficient algorithm 

for the inverse kinematics of a 

general serial 6r manipulator 

6-dof revolute 

Proposed inverse kinematic solution of 6-dof revolute 

robot manipulator using new efficient algorithm based on 

analytical method. In this work they have used 

elimination technique to reduce the complexity of inverse 

kinematic formulation. They have used general 6-dof 

revolute robot manipulator geometry for the elimination 

information.  

19 1994 Park [20] 

Computational aspects of the 

product-of-exponentials 

formula for robot kinematics 

3-dof revolute 

spatial  

Proposed forward kinematic analysis of 3-dof revolute 

spatial robot manipulator using product of exponential 

algebra based method. In this work they have also 

focused on the calculation of Jacobian matrix using POE 

method.  

20 2008 Pham [21] 

Learning the inverse 

kinematics of a robot 

manipulator using the bees 

algorithm 

3-dof revolute 

Proposed inverse kinematic solution of 3-dof robot 

manipulator using Bee algorithm. In this work they have 

compared three different methods like evolutionary 

algorithm, neural network back propagation method and 

bee algorithm. Neural network structure is optimized by 

using bee algorithm to predict joint variables of the robot 
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manipulator.  

21 2008 

Alavandar 

and Nigam 

[22] 

Neuro-fuzzy based approach 

for inverse kinematics solution 

of industrial robot 

manipulators 

2-dof revolute and 

3-dof revolute 

Proposed inverse kinematic solution of 2-dof and 3-dof 

planar manipulator using adaptive neural fuzzy inference 

system (ANFIS). In this work, they have adopted Sugeno 

type fuzzy architecture and hybridized with simple neural 

network for the prediction of inverse kinematic of planar 

manipulator.  

22 2008 
Albert et al. 

[23] 

Inverse kinematic solution in 

handling 3r manipulator via 

real-time genetic algorithm 

3-dof revolute 

Proposed inverse kinematic solution of 3-dof revolute 

robot manipulator using real time genetic algorithm. In 

this work end-effector displacement form its initial point 

to desired point has been optimized using genetic 

algorithm. Genetic algorithm crossover selection is based 

on new method which is known as dynamic multi-layered 

chromosome (DMCC) to produce two offspring's. The 

GUI simulation has been verified with GA and DMCC.  

23 2008 Dutra [24] 

New technique for inverse 

kinematics problem using 

simulated annealing 

2-dof revolute 

Proposed inverse kinematic solution of 2-link planar 

manipulator using simulated annealing method. In this 

work standard analytical solution of forward kinematic is 

presented using forward kinematic equation the 
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displacement based error minimization objective function 

is used for the simulated annealing approach.  

24 2009 
Sariyildiz and  

Temeltas [25] 

Solution of inverse kinematic 

problem for serial 

robot using quaternions 

6-dof revolute 

Proposed inverse kinematic solution of 6-dof revolute 

robot manipulator based on quaternion in the framework 

of screw theory. In this work they used quaternion with 

the screw theory to reduce the computational cost for 

inverse kinematics derivation.  

25 2009 
 Ayiz and  

Kucuk [26] 

The kinematics of industrial 

robot manipulators based on 

the exponential rotational 

matrices 

6-dof revolute 

Proposed inverse and forward kinematics of 6-dof robot 

manipulator based on exponential rotation matrix method. 

In this work they have used the exponential based method 

for derivation of inverse kinematics of NS and RS type 

robot manipulator. 

26 2009 Martın  [27] 

A method to learn the inverse 

kinematics of multi-link robots 

by evolving 

neuro-controllers 

SCARA 

Proposed inverse kinematic learning of 3-dof planar and 

SCARA manipulator using neuro-controller. 

Furthermore, they have presented the some issues of 

neural network learning such as classical supervised 

learning scheme which generally converse in local 

optimum solution. Therefore they have applied neuro-

evolution algorithm for the global optimum solution of 

the inverse kinematics of the selected manipulator. In this 

work DH-algorithm is used to generate the input data set 
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for the neural network algorithm. They have reduced the 

drawback of the gradient descent learning of ANN model 

with the help of evolutionary algorithm.  

27 2010 
Wenjun et al. 

[28] 

Numerical study on inverse 

kinematic analysis of 5R serial 

robot 

5-dof revolute 

Proposed a mathematical modelling of 5-dof robot 

manipulator using conventional method. In this work they 

have focused on the inverse kinematic and forward 

kinematic solution of robot manipulator. Later section 

deals with the application of genetic algorithm for the 

optimization of joint variables of the adopted 

manipulator.  

28 2010 

Chiddarwar 

and Babu  

[29] 

Comparison of RBF and MLP 

neural networks to solve 

inverse kinematic problem for 

6R serial robot by a fusion 

approach 

6-dof revolute 

Proposed MLP and RBF neural network model for the 

solution of inverse kinematic of the 6-dof serial 

manipulator. In this work, a fusion approach of these 

ANN models is used with the forward kinematics of the 

manipulator. Forward kinematics equations are used to 

generate the data for training adopted models of ANN. 

They have proposed the Cartesian path to be followed by 

the manipulator end effector using the generated ANN 

inverse kinematic solution. KUKA 6-dof manipulator is 

tested with the obtained results wherein DH-algorithm is 

used to generate the input for the ANN models.   
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29 2010 
Hasan et al. 

[30] 

Artificial neural network-based 

kinematics Jacobian solution 

for serial manipulator is 

passing through singular 

configurations 

6-dof revolute 

Proposed inverse kinematic solution of 6-dof revolute 

robot manipulator using artificial neural network based 

technique. In this work they have also focused on the 

singularity avoidance using Jacobian based method 

together with the ANN approach. 

30 2010  Cui [31] 

Kinematics simulation of an 

aided fruit-harvesting 

manipulator based on ADAMS 

4-dof 

Proposed virtual model of an agricultural robot for fruit 

harvesting and their kinematics analysis using DH 

algorithm. In this work, the inverse kinematic is obtained 

using algebraic method and simulations are carried out 

using ADAMS.  

31 2011 
Olaru et al. 

[32] 

Assisted research and 

optimization of the proper 

neural network solving the 

inverse kinematics problem 

3-dof revolute 

Proposed inverse kinematic solution of 3-dof revolute 

robot manipulator using neural network technique. In this 

work DH-algorithm is used to calculate the forward 

kinematic of the adopted manipulator.  

32 2011 
Ramírez and 

Rubiano [33] 

Optimization of inverse 

kinematics of a 3r robotic 

manipulator using genetic 

algorithms. 

3-dof revolute 

Proposed inverse kinematic solution of 3-dof revolute 

spatial manipulator using genetic algorithm. Forward 

kinematics formulation has been completed by using DH-

algorithms and homogeneous matrix multiplication based 

method. Fitness function for the inverse kinematic 

solution is based on the end effectors initial and desired 

position error which is also known as Euclidean distance 
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norm.  

33 2011  Zhang [34] 

A psgo-based method for 

inverse kinematics analysis of 

serial dangerous articles 

disposal manipulator 

Mobile robot with 

6-dof revolute 

manipulator 

Proposed inverse kinematic solution of the serial 

dangerous articles disposal manipulator with multiple 

degrees of freedom using particle swarm gene 

optimization algorithm. In this work position and 

orientation error of end effector is used as an objective 

function for traditional PSO and modified PSGO method.  

34 2012  Köker [35] 

A genetic algorithm approach 

to a neural-network-based 

inverse kinematics solution of 

robotic manipulators based on 

error minimization 

Stanford robot 

Proposed hybrid approach which is combination of   

neural networks and evolutionary techniques (genetic 

algorithms) to obtain more precise solutions. Three 

Elman neural networks were trained using separate 

training sets.  

35 2013 
Morishita and 

Tojo [36] 

Integer inverse kinematics 

method using fuzzy logic 
3-dof revolute 

Proposed integer inverse kinematic solution of multi-joint 

robot manipulator using fuzzy logic based method. They 

have evaluated the efficiency of the adopted technique 

and tested it for trajectory generation and control 

application 

36 2004 

Perez and 

McCarthy 

[37] 

Dual quaternion synthesis of 

constrained robotic systems 
2,3and 4-dof 

Proposed dual quaternion algebra based kinematic 

synthesis of constrained robotic system. They have 

proposed this method for one or more serial chain 

manipulator considering both prismatic and revolute 
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joints. In this research they have used DH algorithm and 

successive screw displacement for determining the joint 

variables for the resolution of end effector position. Then 

dual quaternions are used to define the transformation 

matrices obtained through DH algorithm to simplify the 

design formulations of different types of manipulators.   

37 1988 
Bendezu et al. 

[38]  

Symbolic computation of robot 

manipulator kinematics 

7-dof 

anthropomorphic  

Symbolic robot arm tool software is introduced to solve 

inverse kinematic problem.  

38 1990 
Smith and 

Lipkin [39] 

Analysis of fourth order 

manipulator 

kinematics using conic 

sections 

6-dof revolute 

Introduced new technique based on fourth order inverse 

kinematic solution. In this work solution of inverse 

kinematics problem is considered as pencil of conics. 
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Study confirms that the number of research publications which appears in various 

journals, conference proceedings and technical articles verify various aspects of inverse 

kinematic analysis of robot manipulator. Inverse kinematic solution of robot 

manipulator can be classified on the basis of different methodology. A lot of literature 

survey has been done regarding this area, some of which are discussed as follows.   

i) Structural analysis of mechanism 

ii) Conventional method for kinematics  

iii) Intelligent or soft computing approach 

iv) Optimization approach  

2.2.1 Structural analysis of mechanism 

The major aim of this literature survey is limited to the mechanism serial, parallel or 

hybrid mainly expected for mobility's of the kinematic chains. As we know that dof or 

mobility of any mechanism or manipulator is the basic approach for classification or 

kinematic analysis. Therefore it is require having understanding of different way of dof 

or mobility for various mechanism and their formulations. On the other hand, working 

abilities of manipulator or any mechanism can be evaluated from its dof/mobility. A 

general rigid body in a space having 6-dof that is the maximum know dof of the system. 

However, there are numerous criteria for the literature survey but typically one can go 

for the dof/mobility analysis of different mechanism or structure of the manipulator.  

The history of the structural analysis related to mobility and about the no. of 

independent kinematic chains was done by L. Euler. Then afterward in 19
th

 century, the 

first mechanism analysis and structural formula was generated by [40]-[44] as depicted 

in Table 2.2. The basic concept of dof is the total number of independent loops (l), dof 

of the mechanism (M), number of joints (j), moving links (n) dof of kinematic pairs (f), 

joint constraints (s), no. of passive dof (Jp), no. of over closing constraints (q), loop 

motion variables (  ) etc. Therefore brief literature survey has been done related to 

structural formula and the parameters are presented in Table 2.2. Later in the 20
th

 

century structural formula and simple groups have developed by [45]-[52] as given 

below in Table 2.2. Furthermore several novel concept had been generated for the 

problem of configuration analysis and design synthesis of mechnaism and manipulators 

such as screw pairs (Sc), some configurations with zero dof (M=0), no of variable 

length links (nv), general variable constraints ( k ) and the closed loop constraints (

kk 6d  ).   

Afterwards in 20
th

 century general mathematical modelling of the determination of dof 

for any mechanism had been achieved by [53]-[72] as shown in Table 2.2. Therefore 

following up these research several new parameter for calculation of dof of mechanism 
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had been introduced these new parameters are screw system for closed loop (r), no. of 

independent dof's ( k ), relative displacement of joints (m), coefficient matrix rank 

(r(j)), new formula for independent loops bB cBjL   where Bj total no. of joints, bc  is 

total number of fixed links and B total no. of moving links.  

Now in starting of 21
st
 century, drastic development of mechanism and manipulation in 

the field of robotics has been shown. There are several new parameters and structural 

formula related to the real world applications and implementation has been shown [73]-

[74]. They have calculated dof of different mechanism and introduced new parameters 

for kinematics and structural analysis. New formula for number of independent loops 

were L=c-B, and simple structural formula for mechanism )Bc(f i  , where,

lhb cccc   , lc .  

The kinematic formulations of the mechanism or manipulator are evaluated through a 

number of task positions and their kinematics to find out the design equations. These 

formulas are having both structural and joint parameters as unknown. These design 

equation are mainly based on the kinematic analysis and different parameters. In this 

area of research during 20
th

 century [46] developed basic theory of open loop serial 

chain and then this was utilized for different classifications of the structure. Thereafter, 

this theory was analysed by [47] for structural synthesis and kinematic analysis. This 

problem of structural synthesis has been done for the closed loop problem. This 

classification was made on the basis of number of moving or fixed links, closed loops 

and number of joints.  Boden [57] has given spatial and planar configuration related to 

truss and later defined by number of closed loops. Kolchin [50] has presented the theory 

of new constraint i.e. passive constraint but that was not for identification of geometric 

conditions it was only for the general constraint problem of mechanism. The problem 

related to general constraint was first completed by Voinea et al. [54] through the rank 

of matrix and unknowns of the angular velocities. In 1963 Ozol has presented the 

topological properties of the mechanism.  

The technique of configuration synthesis was based on graph theory to obtain 

kinematics chains and mechanism [52]-[63]. Now for the higher dof or complicated 

structures the kinematics analysis of spatial and planar case was done by [53]. 

Thereafter, resolving the classifications of structure is completed using the theory of 

dividing joints by [45]-[52]. In 20
th

 century, [63] and [71] presented computer aided 

technique for the structural analysis of spatial manipulators. Later [73] introduced 

computer aided method for planar manipulator or mechanism and then loop formation 

for cancelling the isomorphism test was introduced by [68] and [72].   
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Table 2.2 Different mechanisms and mobility 

 

 

SN Authors Equations Remarks 

1 
Euler  

 

1ljLi    

 

iL represents total number of 

independent loops,  l represents total 

number of links, j represents total  

number of joints 

2 

Chebyshev 

[40] 

 
1lnl3lj

l
2

1
ljj0

01j2l3

dd

d

d









  

First equation represents the planar 

mechanism with single dof , dj  

represents the total moving joints and  

dl =n  represents number of 

moving links 

3 

Sylvester 

[41] 

 
1nj

04j2l3





 This equation represents the planar 

mechanism with single dof. 

4 Grübler [42] 

 

1

o

p5)1l(6M

or

07l6H5

0Cq4j2l3

03jl2

0q4j2l3

3j2l3M

























 

 

oM  represents the dof of mechanisms. 

dof depends on the rank of functional 

determinant 

 

First equation is based on planar 

mechanism.  

 

Second Eq. represents the kinematic 

chain of revolute and prismatic joint. 

 

Third eqn. is for planar mechanism 

with only prismatic joint. 

 

Fourth eqn.  Eq. is for revolute, cam 

and prismatic joints.  

 

Fifth eqn. represents the dof of spatial 

mechanism of helical joint.  

 

5 
Somov [43] 

 
























1jK,1Lv

,6,7v5l

qL5jf)1l(M

)1v)(1(Kql

2)1v)(1(l

pu

io

u

 

 

First equation is based on both planar 

and spatial mechanism.  

 

Second one is also for plane and spatial 

mechanism where 1Mo   

 

Equation third is Somov's universal 

formula for structure where  is the 

general parameter for constraint. 



     

  43 

 

Table 2.2 Different mechanisms and mobility (Continued) 

 

 

 

 

 

 

SN Authors Equations Remarks 

6 

Gokhman 

[44] 

 

1S)1(l   

1 Lf i   

1)(  SLj  

First eqn. is for both planar and spatial 

mechanism, where ifiS   )(  is the 

total no. of joint constraints 

 

Second one represents the mobility 

criterion 

 

Last eqn. is ultimate resolution of Euler 

eqn. using first and second eqn.  

7 Koeings [45] 

 
SnM  6  

Koeings also presented eqn. for the  

spatial mechanism like Gokhman's eqn.  

8 Assur [46] 

 
023  jn  Assur presented eqn. for simple 

mechanism 

9 Muller  [47] 

 

so

s

S)1(nM

0)1(lS)1(



 

 

Ss is the number of 

screw pairs 

This eqn. represents the screw pair of 

the kinematic chain.  

10 
Malushev 

[48] 

 




 

5

1i

vio nqip)1l(6M  

pi is the kinematic pairs 

with i class 

i = number of joint 

constraint 

This eqn. is the combined approach of 

Somov and Malushev for mobility with 

n no. of links, where ip represents the 

kinematic pair with no. of constraint i 

11 
Kutzbach 

[49] 

 
















j

1i

io

j

1i

io

f)i()1l(M

f)1jl(M





 

Kutzbach has also given equation for 

universal configuration  
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Table 2.2 Different mechanisms and mobility (Continued) 

 

 

SN Authors Equations Remarks 

12 Kolchin [50] 

 

2o p)KRP(2)1l(3M  

 

P is the number of 

prismatic pairs 

R is the number of 

revolute pairs 

This eqn. represents for planar 

mechanism where R is revolute, P is 

prismatic and K represents higher pair 

with pure slip and roll variables 

whereas, 2p gives only for slipping and 

rolling higher pairs.  

 

13 
Artobolevskii  

[51] 

 

qdSn6M

j

1i

L

1K

Kjo   
 

 

 

This eqn. is also represents the 

universal mobility for different 

structure.  

14 
Dobrovolskii 

[52] 

 6,.......2

qp)i(nM

1

1i

io



 









 
Another mobility formula for different 

structure.  

 

15 
Moroshkin 

[53] 

 
njL

6,.......2and,5,.......1i

pipM

ripM

i

io

i

io


















  

First eqn. represents the structural form 

of integral joints  

 

Second eqn. represents dof for variable 

constraints.  

 

16 
Voinea and 

Atanasiu [54] 

 

 




j

i

L

1K

pKio jrfM  

 

This eqn. represents dof for complex 

mechanism where Kr  is rank for screw 

joints and 


j

i

if

1

 represents the total no. 

of dof for revolute, helical and 

prismatic joints.  

 

 

17 Paul [55] 

 
01ljL    Euler's formula for creating topological 

situation for planar kinematic chain  

18 Rössner [56] 

 
)1lj(6fM

j

1i

io  



  Similar to Euler's eqn. for mobility 
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Table 2.2 Different mechanisms and mobility (Continued) 

 

 

 

SN Authors Equations Remarks 

19 Boden [57] 

 
)1lj(3)1lj(6f

M

j

1i

i

o











 

dof eqn. for planar and spatial 

mechanism 

20 Ozol [58] 

 

qL2jM

qj)1l(2M

qL3fM

qL6fM

o

o

j

1i

io

j

1i

io



















 

First to third eqn. represents the 

mobility with variable and excessive 

constraint  

Last eqn. represents the mobility for 

cylindrical mechanism.  

 

21 Waldron [59] rFMo   Eqn. for mobility of closed loop 

mechanism.  

22 
Manolescu 

[60] 

 


 



5

1li

io L)d6(p)i6(M

 

Eqn. for closed loop mechanism with 

elementary parameter  

23 Bagci [61] 

 
 
 







5

1i

p

L

1K

Ki

o

jqdf)i6(

)1l(6M

 

Modified form of Artobolevskii's eqn. 

for mobility with new introduced 

parameter pj  

24 Antonescu 

[62] 




 

5

1i

iaao p)di()1l)(d6(M

 

Similar to Dobrovolskii's eqn. for 

mobility with various motion 

coefficient  

25 

Freudenstein 

and 

Alizade [63] 

 

6,5,4,3,2

LfM

LmM

fM

mM

j

1i

io

E

1i

io

j

1i

L

1K

Kio

E

1i

L

1K

Kio















 

 





 

 











 

Mobility eqn. for various conditions 

and parameter for spatial and planar 

mechanism.  

26 Hunt [64] 

 



 

j

1i

io f)1jl(M   This eqn. is the extended for of eqn. 25.  



     

  46 

 

Table 2.2 Different mechanisms and mobility (Continued) 
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Table 2.2 Different mechanisms and mobility (Continued) 

2.2.2 Conventional methods 

It is well known that the three dimensional homogeneous transformation matrix broadly 

used in the robotics field. Homogeneous transformation matrix mostly deals in the field 

of mobile robot, industrial robot and computer graphics for motion analysis. On the 

other hand there are several conventional tools to find out the kinematic solutions of the 

robot manipulator.    

Kanayama and Krahn [77] proposed a new ―heterogeneous‖ two-dimensional (2-D) 

transformation group to solve motion analysis/planning problems in robotics. In the 

new method they used a 3X1 matrix to represent a transformation which is as capable 

as the homogeneous theory. This requires less memory space and less computation time 

as opposed to a 3X3 matrix in the homogeneous formulation and it does not have the 

rotational matrix inconsistency problem. This heterogeneous formulation has been 
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successfully implemented in the MML software system for the autonomous mobile 

robot Yamabico-11. 

Paul and Zhang [78] presented homogeneous transformations based kinematic 

analysis of Manipulators with Spherical Wrists and described its position and 

orientation. They used proposed technique to obtain kinematic equations directly in a 

form suitable for computer implementation. The equations are numerically stable and 

are obtained almost automatically. The resulting equations involve the minimum 

number of mathematical operations.  

Aspragathos and Dimitros [79] presented three methods for the formulation of the 

kinematic equations of robots with rigid links. The first and most common method in 

the robotics community is based on homogeneous matrix transformation, the second 

one is based on Lie algebra, and the third one on screw theory expressed via dual 

quaternion algebra. They compared these three methods for their use in the kinematic 

analysis of robot arms. They presented three analytic algorithms for the solution of the 

direct kinematic problem corresponding to each method. Finally, a comparative study 

on the computation and storage requirements for the three methods is worked out. 

However the application has not been done in higher DOF manipulators and it is 

applied to five DOF robots only. 

De Xu [80] proposed an analytical solution for a 5-DOF manipulator to follow a given 

trajectory while keeping the orientation of one axis in the end-effector frame. They used 

homogeneous transformation matrix for forward kinematics and inverse kinematics of a 

5-DOF manipulator. The singular problem is discussed after the forward kinematics is 

provided. For any given reachable position and orientation of the end-effector, the 

derived inverse kinematics will provide an accurate solution. In other words, there 

exists no singular problem for the 5-DOF manipulator, which has wide application 

areas such as welding, spraying, and painting. Experiment results verify the 

effectiveness of the methods developed in this paper. 

Manocha and Canny [81] proposed an efficient algorithm for inverse kinematics 

solution of general 6-dof revolute manipulator with arbitrary geometry. When started 

mathematically, the problem reduces to solving a system of multivariate equations. 

They used properties of algebra and symbolic formulation for reducing the problem to 

solve univariate polynomial. However, the polynomial is expressed as a matrix 

determinant and its roots are computed by reducing to an Eigen value problem. These 

algorithms involve symbolic pre-processing, matrix computations and variety of other 

numerical techniques.  
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Lai and Menq [82] Proposed two algorithms, the degenerate axis and iterative methods 

for the motion control of manipulators with closed-form solutions in the neighbourhood 

of singularities. These two methods theoretically guarantee a robot's position accuracy. 

The degenerate axis method may not work well when a robot's orientation and location 

increments become finite. If a robot is moving with slow speed or the interpolation time 

is in the order of microsecond, the location and orientation increments are small. In this 

case, the degenerate axis method is favoured for it has less computation than that of the 

iterative method. Although it cannot be proved that the iterative scheme gives the 

required position accuracy and minimizes the orientation error, the results seem to show 

that this scheme converges to an acceptable solution. It is believed that the iterative 

method is the first of its kind to solve the singular motion control problem by using a 

robot's closed-form inverse kinematics. Simple computation for the iterative scheme 

makes it possible to be implemented in many industrial robots. 

Pennock and Raghavan [83] proposed a numerical algorithm to solve the inverse 

kinematics of parallel robots based on numerical integration. Inverse kinematics 

algorithms based on numerical integration involve the drift phenomena of the solution; 

as a consequence, errors are generated when the end-effector location differs from that 

desired. The proposed algorithm associates a novel method to describe the differential 

kinematics with a simple numerical integration method. The methodology is presented 

in this paper and its exponential stability is proved. A numerical example and a real 

application are presented to outline its advantages. 

 Kucuk and Bingul [84] described forward and inverse kinematics transformations for 

an open kinematics chain based on the homogenous transformation. Then, geometric 

and algebraic approaches discussed with explanatory examples. Finally, the forward 

and inverse kinematics transformations are derived based on the quaternion modelling 

convention and are explained with the illustrative examples.  

Walker [85] proposed the position of a manipulator expressed as either in joint 

coordinates or in Cartesian coordinates.  A new algebra has been defined for the use in 

solving the forward and inverse kinematics problem of manipulators. The properties of 

the algebra are investigated and functions of an epsilon numbers are defined. The Ada 

language was used for illustration because of the ease in implementing the algebra and 

it is being used to solve the forward and inverse kinematics problems. However, the 

program actually used epsilon numbers and used the overloading feature of the Ada 

language to implement the epsilon algebra. By simply changing the order of the 

algebra, the resulting program can compute a time derivative of the end-effector‘s 

position when used-to solve the forward kinematics problem and any time derivative of 

joint positions when used to solve the inverse kinematics problem. 
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Balkan et al. [86] presented inverse kinematic solutions analytically by manipulating 

the trigonometric equations directly without converting them necessarily into 

polynomial equations. Four different subgroups are selected for the demonstration of 

the inverse kinematic solution method. Two of these subgroups are examples to closed-

form and semi-analytic inverse kinematic solutions for the most frequently seen 

kinematic structures among the industrial robots. 

Lipkin [87] described the Denavit-Hartenberg conventions model chains of bodies 

connected by joints. Originally they were applied to single-loop chains but are now 

almost universally applied to open-loop serial chains such as robotic manipulators. 

Unfortunately there are several popular variations of the notation: the original, the distal 

variant, and the proximal variant. These three cases are compared for their application 

to serial robots. The proximal variate is advanced as the most notation ally transparent 

for the mechanical analysis of serial manipulators. 

Ceccarelli and Ottaviano [88] described a kinematic design procedure to obtain 

closed-form formulation and/or numerical algorithms, which can be used not only for 

design purposes but even to investigate effects of design parameters on design 

characteristics and operation performance of manipulators. Usually, there is a 

distinction between open-chain serial manipulators and closed-chain parallel 

manipulators. This distinction is also considered as a constraint for the kinematic design 

of manipulators and in fact different procedures and formulation have been proposed to 

take into account the peculiar differences in their kinematic design. Nevertheless, 

recently, attempts have been made to formulate a unique view for kinematic design both 

of serial and parallel manipulators, mainly with an approach using optimization 

problems. 

Low and Dubey [89] proposed two different approaches to the inverse- kinematics 

problem for a six-degree-of-freedom robot manipulator having three revolute joint axes 

intersecting at the wrist. One method uses three rotational generalized coordinates to 

describe the orientation of the body. The other method uses equivalent Euler parameters 

with one constraint equation. These two approaches have been incorporated into two 

different computer algorithms, and the results from each are compared on the basis of 

computational complexity, time simulation, singularity, etc. It was found that Euler 

parameters were less efficient than three rotational angles for solving the inverse-

kinematics problem of the robot considered, and that the physical singularities caused 

by the robot mechanism could not be eliminated by using either of the two approaches. 

Perez [90] proposed algorithms for computing constraints on the position of an object 

due to the presence of other objects. This problem arises in applications that require 

choosing how to arrange or how to move objects without collisions. They described the 
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approach based on characterizing the position and orientation of an object as a single 

point in a configuration space, in which each coordinate represents a degree of freedom 

in the position or orientation of the object. The configurations forbidden to this object, 

due to the presence of other objects, can then be characterized as regions in the 

configuration space, called configuration space obstacles. The paper presents 

algorithms for computing these configuration space obstacles when the objects are 

polygons or polyhedral. 

Singh and Claassens [91] proposed the inverse kinematics solution for the 7 Degrees 

of Freedom Barrett Whole Arm Manipulator with link offsets. The presence of link 

offsets gives rise to the possibility of the in-elbow & out-elbow poses for a given end-

effector pose and is discussed. A parametric solution for all possible geometric poses is 

generated for a desired end-effector pose (position and orientation). The set of possible 

geometric poses are completely defined by three circles in the Cartesian space. A 

method of computing the joint variables for any geometric pose is presented. An 

analytical method of identifying a set of feasible poses for some joint angle constraints 

is also addressed. 

Nielsen and Roth [92] proposed solution techniques of inverse kinematics using 

polynomial continuation, Gröbner bases, and elimination. They compared the results 

that have been obtained with these techniques in the solution of two basic problems, 

namely, the inverse kinematics for serial-chain manipulators, and the direct kinematics 

of in-parallel platform devices. 

Xin et al. [93] proposed a simple effective method for inverse kinematics problem of 

general 6-dof revolute serial robot or forward kinematics problem of general 7-dof 

revolute single-loop mechanism based on a one-dimension searching algorithm. All the 

real solutions to inverse kinematics problems of the general 6-dof revolute serial robot 

or forward kinematics problems of the general 7-dof revolute single-loop mechanism 

can be obtained. They proposed following features of applied method: (1) using one-

dimension searching algorithm, all the real inverse kinematic solutions are obtained and 

it has higher computing efficiency; and (2) compared with the algebraic method, it has 

evidently reduced the difficulty of deducing formulas. The principle of the new method 

can be generalized to kinematic analysis of parallel mechanisms. 

Mavroidis et al. [94] proposed geometric design problem of R-R spatial manipulators 

with a new method that uses the DH parameters. They defined three end-effector 

positions and orientations using three 4 by 4 homogenous transformation matrices. The 

loop-closure geometric equations provide the required number of design equations. 

Polynomial Elimination techniques are used to solve these equations and obtain the 

manipulator DH parameters including DH parameters that describe the location of the 
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base frame with respect to an arbitrary reference frame and parameters associated with 

the end-effector. A sixth order polynomial is obtained in one of the design parameters. 

Novel method is applied to demonstrate that the two spatial R-R chains obtained as real 

solutions to the numerical example can form a four-bar Bennett mechanism. Finally, 

two special cases where the orientations of any two or all three precision points are 

identical are solved using the DH formulation. 

Chen et al. [95] proposed formulation of a generic numerical inverse kinematics model 

and automatic generation of the model for arbitrary robot geometry, including serial and 

tree-typed geometries. Both revolute and prismatic types of joints are considered. The 

inverse kinematics is obtained through the differential kinematics equations based on 

the product-of-exponential POE formulas. The Newton Raphson iteration method is 

employed for solution. The automated model generation is accomplished by using the 

kinematic graph representation of a modular robot assembly configuration and the 

related accessibility matrix and path matrix. Examples of the inverse kinematics 

solutions for different types of modular robots are given to demonstrate the applicability 

and effectiveness of the proposed algorithm. 

Rico et al. [96] proposed the application of Lie Algebra to the mobility analysis of 

kinematic chains. The instantaneous form of the mobility criterion presented here is 

based on the theory of subspaces and sub algebras of the Lie Algebra of the Euclidean 

group and their possible intersections. It is shown using this theory that certain results 

on mobility of over-constraint linkages derived previously using screw theory are not 

complete and accurate. The theory presented provides for a computational approach that 

would allow efficient automation of the new group theoretic mobility criterion.  

Perez et al. [97] presented the simplest of the over-constrained linkages, the closed 

spatial RPRP linkage.  They have used result in order to synthesize RPRP linkages with 

positive mobility and for a given shape of the screw system of relative displacements. 

In order to do so, they have stated the design equations using the Clifford algebra of 

dual quaternions [15]. The dual quaternion expression can be easily related to the screw 

system and it is also used to assign the magnitude to the screws in order to obtain the 

correspondence between the screw system and the trajectory of the end-effector. The 

design yields a single RPRP linkage. 

Perez and McCarthy [98] proposed dual quaternion algebra based kinematic synthesis 

of constrained robotic system. They have proposed this method for one or more serial 

chain manipulator considering both prismatic and revolute joints. In this research they 

have used DH algorithm and successive screw displacement for determining the joint 

variables for the resolution of end effector position. Then dual quaternions are used to 
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define the transformation matrices obtained through DH algorithm to simplify the 

design formulations of different types of manipulators.   

 Radavellia et al. [99] proposed kinematic solution of 3-dof revolute manipulator using 

dual quaternion and they made comparison between DH algorithm and dual quaternion 

approach. In this work they have calculated position of end effector using homogeneous 

transformation matrix that is later compared with proposed method. They have 

performed the numerical robustness of adopted technique i.e. dual quaternion.   

Serra and Gracia [100] proposed a new method for the description of positional 

dimensional synthesis of robot end effector. The proposed methodology of this work is 

based on rooted tree graph system wherein, the graph analysis is applied to determine 

exact position of end effector. They have presented many examples of tree topologies.  

Krovi et al. [101] proposed design analysis and kinematics of single dof novel coupled 

serial chain manipulator. In this work they have presented dimensional synthesis for 

planar manipulator tasks, considering motions and torques of end effector. They have 

determined the kinematic and kinetostatic synthesis of planar CSC manipulator.  

Lee et al. [102] proposed geometric design problem of 3-dof revolute serial 

manipulator using interval analysis method. They have applied DH algorithm for 

obtaining 4x4 homogeneous matrices which would later use for design analysis. In this 

research, five spatial positions and orientations of end effectors has been predefined to 

check for the accuracy of adopted technique.  

Perez and McCarthy [103] proposed Clifford algebra for the serial coupled n-R 1-dof 

manipulator to obtained design equations and synthesis. They presented the relative 

kinematics of serial chain in the matrix exponential form. In this work the formulations 

of design equation using Clifford algebra are shown efficient for manipulation tasks. 

They have also presented the inverse kinematic solution of the proposed manipulator.  

Hegedüs et al. [104] proposed factorization theory using motion polynomials over 

quaternion algebra for the solution of 6-dof revolute manipulator kinematics. In this 

work they proposed strategy for picking best solutions of the problem.  

Zhang and Nelson [105] proposed kinematic design and optimization of serial 

spherical mechanism using genetic algorithm, In this work global manipulability and 

the uniformity of the mechanism and their workspace for synthesis has been analysed.  

Müller [106] proposed generic properties of kinematic mapping for serial manipulator. 

Firstly they have presented the stability of the property for small changes in geometry 

of the considered mechanism and second one is concern with singularity analysis. In 

this work clear manifestation of motion spaces of each joint and classes of kinematic 

mapping is presented.   
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Mavroidis and Roth [107] presented a new method for the determination of uncertain 

configurations of general 6-dof revolute robot manipulator. In this work the proposed 

novel method for determining the uncertainty or redundancy is based on analytical 

formulations for the loop closure equations. In this formulation general 6-dof revolute 

manipulator is transformed into mR Configuration, and new structural parameters are 

defined.  

Balkan et al. [108] presented a general method for the classification of 6-dof industrial 

manipulators based on the kinematic structure and their detail analyses of kinematic 

equations on the basis of classification are given. They have adopted the exponential 

rotation matrix algebra to find out the closed form solution of inverse kinematics of 

robot manipulator.    

Özgören [109] proposed exponential rotation based matrix method for the kinematic 

analysis of screw and crank mechanism. They have presented the usefulness of the 

analytical tool for effective solution of kinematics for spatial mechanism involving 

displacement, singularity, velocity and acceleration.   

Pennestri and Valentini [110] proposed dual algebra for the representation of various 

mechanical and mathematical entities such as screws, line vectors and wrenches. They 

have given different algorithms for the handling of these vector and matrices of dual 

number for the analysis kinematic of different mechanisms. They have also proposed 

the application of the derived algebra for the rigid body motion analysis.  

Lee and Mavroidis [111] proposed polynomial continuation method for the analysis of 

geometric design problem of 3-dof revolute manipulator. They have developed the 

elimination method for 4 point precision geometric analysis of the manipulator. In this 

work, each precision point of the end effector has been considered spatial configuration. 

DH algorithm is used in this work for the formulation of the design equations.  

Liang et al. [112] presented pose error analysis of SCARA manipulator using screw 

theory. They have presented the error produced by DH algorithm and compared the 

same with the output of the screw based analysis of the manipulation.  

Zhuang et al. [113] proposed the linear solution of PUMA robot for the computation of 

transformations of coordinated from world coordinate to base coordinate. In this work, 

solution for locating the robot end effector with respect to a reference frame has been 

presented.  They have also applied the quaternion algebra along with the homogeneous 

transformation matrix method.  

Samer Yahya et al. [114] proposed a novel method for the solution of inverse 

kinematic of hyper redundant manipulator using geometric algebra. In this work, the 

joint angles are set to similar which makes facing of two or more joint axes impossible; 
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therefore it can avoid singularities. They have also presented workspace analysis of the 

proposed manipulator.  

 Cui et al. [115] proposed virtual model of an agricultural robot for fruit harvesting and 

their kinematics analysis using DH algorithm. In this work, the inverse kinematic is 

obtained using algebraic method and simulations are carried out using ADAMS.  

Ahmed and Pechev [116] proposed pseudo-inverse based technique for the control of 

feedback inverse kinematics of Mitsubishi RV-1A a six degree of freedom robotic 

manipulator. In this work, kinematic analysis of 6-dof manipulator has been done on the 

basis of DH algorithm and later compared with damped least square inverse kinematics.  

Wei et al. [117] proposed semi-analytic method for solving inverse kinematics of n-R 

robot manipulator that reduces the numerical method's margins related to accuracy. In 

this work, conformal geometric theory is used for the generation of general kinematic 

equation. Finally they have tested the proposed method in 6-dof revolute manipulator to 

prove the efficiency and quality of the solution.  

Palacios [118] proposed several approach for the solution of inverse kinematic of 6-dof 

robot manipulators without considering explicit solution for the chosen manipulator. In 

this work, 16 different structure or configurations of the 6-dof manipulator has been 

presented and their classification on the basis of the structure. A complementary 

example is also presented for the inverse kinematic solution of 5-dof manipulator.  

Muszynski [119] proposed a normal form approach for the solution of inverse 

kinematic of the ASEA IRB-6 robot manipulator. In this work two steps have been 

presented for the solution of inverse kinematics, firstly they have considered the 

hyperbolic normal form of the singular kinematics of the manipulator and then 

inversion algorithms is presented.  

BHATTI et al. [120] proposed the problem of matching forward and inverse kinematic 

motion of 3-dimentional chain using pseudo-inverse Jacobian matrix method. This 

method is proposed for the solution of inverse kinematics of 3d-dimetional rig character 

for animations.  

Herrera et al. [121] presented dual number representation for solving kinematics 

problem of rigid body, wherein robot manipulator has been considered for the 

kinematic analysis using dual number theory particularly serial manipulator. In this 

work, cylindrical, prismatic and rotational joints are used for the analysis of kinematics 

using the developed method.  

Luo et al. [122] proposed a hyper-chaotic least square method for inverse kinematic 

solution of 6-dof revolute general manipulator. In this work all real solution of obtained 

nonlinear equations has been proposed and inverse displacement analysis of 6-dof 
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revolute manipulator is completed. These obtained nonlinear equations are basically 

formulated by using DH algorithm and they have presented the numerical example for 

the constrained equations.  

Karpinska et al. [123] proposed approximation problem of Jacobian based inverse 

kinematic solution of 7-dof redundant manipulator. In this paper they have focused on 

Jacobian pseudo inverse using extended Jacobian algorithm specifically they have 

examined two methods, first method is referred to differential geometric and alternative 

method is based on minimization of approximation error using calculus of variations. .  

Brandstotter et al. [124] proposed an efficient generic method for the solution of 

inverse kinematic of 6-dof serial manipulator. In this work they have mainly focused on 

DH algorithm considering seven geometric parameters.  

Kofinas et al. [125] presented a complete forward and inverse kinematic analytical 

solution of Aldebaran NAO humanoid robot and their software implementation for real 

time on-board execution. In this work they have decomposed NAO robot into 5 

independent structure of the robot such as two arms, head, and two legs, then DH 

algorithm is used for the kinematic resolutions.  

Szkodny [126] presented all equations of forward and inverse kinematics of IRB-6 

manipulator using matrix based method. In this work DH algorithms and homogeneous 

transformation matrices are used to formulate inverse and forward kinematics of IRB-6 

robot manipulation.  

Wang et al. [127] presented the geometric structure, particularly Lie group properties 

of the dual quaternion and the exponential form of the dual quaternion is derived. They 

have also presented the usefulness and application of the proposed model for kinematic 

analysis of robots.  

Feng and Wan [128] presented blending algorithm for quaternion to dual quaternion 

representations of rigid body transformations. This work mainly focused on the 

character animation and kinematic analysis of the character using the dual quaternion 

and proposed method has been presented.  

Gu and Luh [129] proposed dual number theory for representation of line 

transformation and their application to solve kinematic problem of robot manipulator.  

This work is mainly focused on an algorithm which pacts with the symbolic analysis of 

rotation and translation of links.  

Wenz and Worn [130] proposed closed form solution of forward and inverse 

kinematics of 6-dof manipulator.  In this work DH algorithm is used for derivation of 

nonlinear inverse kinematics equations and these kinematics equations are simplify 

using Groebner basis elimination method.  
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Neppalli et al. [131] proposed novel analytical method for inverse kinematic solution 

of multi section continuum manipulator. In this work, the kinematic of the mechanism 

is decomposed into some sub problems like solution of inverse kinematic for single 

trunk on the basis of known end points of trunk and then applying single section inverse 

kinematics to all section of the trunk. Finally, this approach computes final section 

kinematics of the proposed model of trunk.  

Olunloyo et al. [132] proposed inverse and forward kinematic analysis of 5-dof robot 

manipulator to compare the accuracy and repeatability of the obtained solutions. In this 

work, DH algorithm is used for the derivation of kinematic of 2 link and 3 link 

manipulators using all algebraic equations derived from the kinematic transformations 

of the link.  

Yildirim and Bayram [133] presented the mathematical modelling and kinematic 

analysis of industrial manipulator using Maple robotics toolbox. In this work position 

and orientation of the tool can be obtained by using DH algorithm and also for joint 

variables this method is capable of solving Jacobian and angular velocities.   

Der et al. [134] proposed reduced deformation model based algorithm to solve inverse 

kinematics of animated character. A proposed algorithm provides intuitive and direct 

control of the reduced deformable models similar to a conventional inverse kinematic 

algorithm for the joint structure. They have presented the fully automatic pipeline 

transformations of controllable shapes with only few manipulations that reduce the 

mathematical complexity of the inverse kinematic of the mechanism.  

Zoric et al. [135] proposed a quaternion approach for the modelling kinematic and 

dynamics of the rigid multi-body mechanism. In this work, regular Newton-Euler and 

Lagrange technique is sorted  in the covariant form by applying Rodriguez approach 

and quaternion algebra that can be useful for calculation of kinematic and dynamics of 

any mechanism.  

Calderon et al. [136] proposed trajectory planning and analytical inverse kinematic 

solution of 5-dof Parm robot manipulator. This work is based on the hybrid algorithm 

of analytical inverse kinematic and displacement error. Furthermore resolve motion rate 

control using Jacobian is used for the smooth motion of end effector. In this work they 

have used displacement error or Euclidean distance based inverse kinematic solution of 

5-dof manipulator.  

Ahmmad et al. [137] proposed inverse kinematic solution of 4-dof redundant 

manipulator and validated with experimental results. In this work, partition of the 4-dof 

manipulator into 2, 2-dof virtual sub-robot and then solved the inverse kinematic 

analytical for both sub-robots.  
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Fedák et al. [138] proposed kinematic and dynamic analysis of 6-dof robot 

manipulator. In this work 3D CAD model of robot manipulator is developed and later 

imported to the MATLAB Simulink environment. They have worked on the MATLAB 

sim-mechanics for the evaluation of kinematics and dynamics of the designed 

manipulator.  

Gouasmi et al. [139] proposed kinematic analysis and trajectory planning for 2-dof and 

SACARA manipulator. They have used SolidWorks software for the modelling the 

manipulator later imported in MATLAB Simulink environment for simulations and 

motion analysis. The main task performed in this paper is comparison of two robot 

positions with the similar trajectory along with same time and establishing computer 

program for the kinematic and dynamic analysis.   

Rehiara [140] proposed inverse kinematic solution of Adept three manipulator. 

Forward kinematics of the selected manipulator was calculated by DH-algorithm while 

inverse kinematic resolutions were completed by principle of cosines. A graphical 

simulations and calculations of robot kinematics have been presented by using 

LabVIEW.   

Dahari and Tan [141] proposed forward and inverse kinematic solution for KUKA 

robot manipulator for the welding application. They have selected several welding spot 

to be performed by the manipulator. To do so they have used analytical method for 

solving inverse kinematics using DH-algorithm.  

Soares et al. [142] proposed rhino manipulator kinematics and control using RobSim 

software. In this work they have focused on image capturing device for the position and 

orientation of the end effector. This method is developed in MATLAB presented 

simulations for the selected manipulator. In this platform a basic unit which is called 

primitives is used to simulate robot structure. Video capturing device is used for the 

vision guided manipulator experiments and image and positions are used for servoing.  

Wang et al. [143] proposed inverse kinematic solution of general 6-dof revolute serial 

manipulator using Groebner bases method. They have reduced the complexity of the 

inverse kinematic polynomial equation using Groebner base method. From this, they 

have given maximum 16 solutions for the inverse kinematic and also concluded that 

this method can be easily implemented on nonlinear equations with the help of 

symbolic representations.  

Gan et al. [144] proposed inverse kinematics of 7-dof robot manipulator using dual 

quaternion algebra. The considered manipulator configuration is serial 7-links with 

revolute joint in this work. They have used Dixon's resultant for input-output; expressed 
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in 6x6 determinant equated to zero, and also determined the angular displacement of the 

joint variables.  

Chelnokov [145] proposed inverse kinematic solution of robot manipulator using bi-

quaternion method. In this method screw system is considered for the coordinate frame 

representation.  

2.2.3 Intelligent or soft computing approach 

Conventional methods for kinematics analysis are more exhaustive and complex in 

nature as per literature survey; there are numerous conventional techniques as explained 

earlier such as analytical, algebraic, numerical, Jacobian matrix based, and geometric 

algebra. These methods generally yield nonlinear, time varying and uncertain equations 

for inverse kinematic. More over these equations does not provide single solution for 

the inverse kinematic problem whereas in case of forward kinematics always unique 

and single solution exists.   

Because of the above-mentioned reasons, various authors adopted intelligent techniques 

to solve inverse kinematic. These intelligent techniques are artificial neural network, 

fuzzy logic, support vector machine, grey neural network, hybrid neural network etc. 

However, to find out the inverse kinematic solution of the given problem using above 

stated intelligent techniques, it is required to calculate forward kinematics of the 

mechanism which will be used to generate input for the intelligent system.  

Artificial neural network (ANN) particularly MLP (multi-layered perceptron) neural 

network is generally used to learn forward as well as inverse kinematics equation of 

various configuration of the manipulator. This method is based on learning process of 

some standard data which rely on the workspace of the manipulator or mechanism. In 

case of ANN there are many ways of learning data such as supervised learning, 

unsupervised or combination of both. ANN follows the functional relationship between 

the input variables (Cartesian coordinates) and output variables (joint coordinates) 

based on the local revision of mapping between input and output. This concept is also a 

basis for fuzzy logic and hybrid intelligent techniques which leads to simple solution of 

inverse kinematic dropping the conventional complex mathematical formulae. The 

simulation and computation of inverse kinematics using intelligent techniques are 

predominantly useful were less computation cost is required, definitely for controlling 

in real time environment. If the configuration of manipulator as well as considering 

number of dof increases, then the conventional analytical methods will turn into more 

complex and difficult mathematics. There are numerous research has been done in the 

field of ANN, fuzzy logic and also for hybrid techniques. 
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Rodríguez et al. [146] proposed artificial neural adaptive interference system (ANFIS) 

and ANN based approach for the solution of the inverse kinematics of the 6-dof 

anthropomorphic manipulator which resembles the human upper limb. In this research 

they have used multi-layered perceptron (MLP) and ANFIS method for the inverse 

kinematic prediction in neuro-rehabilitation purpose under the assisted system. They 

have applied MLP and ANFIS training with Cartesian coordinates of the human upper 

limb for water serving and bottle picking application. Finally they evaluated the 

efficiency and quality of the adopted techniques.  

Chiddarwar and Babu [147] proposed MLP and RBF neural network model for the 

solution of inverse kinematic of the 6-dof serial manipulator. In this work, a fusion 

approach of these ANN models is used with the forward kinematics of the manipulator. 

Forward kinematics equations are used to generate the data for training adopted models 

of ANN. They have proposed the Cartesian path to be followed by the manipulator end 

effector using the generated ANN inverse kinematic solution. KUKA 6-dof manipulator 

is tested with the obtained results wherein DH-algorithm is used to generate the input 

for the ANN models.   

Koker [148] proposed inverse kinematic solution of the Stanford manipulator using 

neural network and genetic algorithm. In this work, Elman's neural network has been 

used and compared with genetic algorithm. A basic calculation for the input of the 

network has been carried out with the DH-algorithm. Three Elman's neural network 

models are trained with DH-algorithm output of kinematics.  In case of genetic 

algorithm the fitness function is set to end effector position error based formula for the 

solution of joint angles.  

Karlik and Aydin [149] proposed structured ANN approach for the inverse kinematic 

solution for 6-dof manipulator. In this work, they have used back-propagation algorithm 

for the training of the ANN model and input datasets were generated by using DH-

algorithm. They have tried to find out the excellent ANN configuration for inverse 

kinematic resolution.   

Hasan et al. [150] proposed adaptive learning plan of ANN for the solution of inverse 

kinematic of 6-dof manipulator. Moreover they have tried to resolve singularity and 

uncertainty problem of the adopted configuration of the manipulator. In this work ANN 

model have been trained using analytical solution of the adopted manipulator. 

Generated datasets using kinematics equations are used to trained and test the adopted 

model of ANN. They have concluded that the proposed model of ANN does not need to 

have previous information of the kinematics of the system that learns through the ANN 

model application.  
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Bocsi et al. [151] proposed inverse kinematic solution of 7-dof Barrett WAM using 

support vector machine. They have explained the learning problem of redundant 

manipulator using neural network based models. The major problem with the solution 

of inverse kinematic is non-unique in nature and generation of large datasets for input. 

Therefore they have proposed a suitable algorithm for learning the kinematics and 

applied to real world problem of 7-dof manipulator.  

Hasan et al. [152] proposed ANN based solution of 6-dof manipulator to avoid 

singularity and uncertainty of the configuration. They have used input data for the 

training the ANN model from the experiments of the adopted model of robot using 

various sensors. They have designed the ANN network for one hidden layer and inputs 

were taken as coordinates of the end effector of robot manipulator. After training of 

neural network model they have tested it for real time application of the adopted 

manipulator with avoiding the singularity problem. Obtained results through their 

experiments shown their efficiency and quality.  

Olaru et al. [153] proposed inverse kinematic solution of the didactical arm using 

neural network. In this work they have used two hidden layer and sigmoid transfer 

function for the training of the neural network. Mathematical modelling was created by 

using neural network and LabVIEW.  They have done the experiments for selecting 

number of hidden neurons for training and better learning o the network to do so they 

have applied different number of neurons for evaluation for trajectory error generated 

by the end effector. All gained results were tested by basic kinematic through 

LabVIEW. Finally they obtained optimal sigmoid function with time delay and 

recurrent network.  

Mayorga and Sanongboon [154] proposed neural network approach for inverse 

kinematic solution of the planar redundant manipulator and effective geometric 

singularity avoidance of the selected manipulator. Moreover they have presented some 

geometrical concept for the singularity avoidance and obstacle avoidance of the 

redundant manipulator. Finally they have presented the performance of the trained 

neural network for the stated problem. 

Kalra and Prakash [155] proposed neuro-genetic approach for the resolution of 

inverse kinematics of planar manipulator. They have used massively parallel 

architecture of ANN for the solution of the stated problem. They have selected the MLP 

network and weights of the ANN model were optimized by real coded genetic 

algorithm so as to overcome the problem of backpropagation algorithm.   

Bhattacharjee1 and Bhattacharjee [156] studied the problem of inverse kinematic 

solution using conventional method and therefor they applied ANN based approach for 



     

  62 

 

the resolution of inverse kinematic of the manipulator. Firstly they have obtained the 

joint angles dataset of the end effector so as to use as input or training of ANN model. 

They have mainly focus on the obstacle avoidance of the manipulator using double 

hidden layer ANN model.  

Martin et al. [157] proposed inverse kinematic learning of 3-dof planar and SCARA 

manipulator using neuro-controller. Furthermore, they have presented the some issues 

of neural network learning such as classical supervised learning scheme which 

generally converse in local optimum solution. Therefore they have applied neuro-

evolution algorithm for the global optimum solution of the inverse kinematics of the 

selected manipulator. In this work DH-algorithm is used to generate the input data set 

for the neural network algorithm. They have reduced the drawback of the gradient 

descent learning of ANN model with the help of evolutionary algorithm.  

Feng et al. [158] proposed novel neural network based approach for the solution of 

inverse kinematics of the PUMA 560 robot manipulator. In this work they have applied 

simple feed forward neural network to obtain the kinematic of the PUMA 560 

manipulator and compared with the developed ELM (extreme learning machine) based 

neural network. They have used machine learning algorithm to overcome the problem 

of traditional gradient descent learning strategy. 

Bingul et al. [159] proposed inverse kinematic solution of 6-dof revolute robot 

manipulator with offset wrist using ANN. Manipulator with offset wrist is considered 

because offset wrist based structure generally does not gives the exact solution using 

some traditional methods. Therefore they have adopted ANN model for the inverse 

kinematic solution. They have used DH-algorithm for the generation of input datasets 

of MLP model and later predicted solution will be used to compare with the traditional 

solution. They have presented the error occurred and the efficiency of the adopted 

technique.  

Hasan et al. [160] proposed inverse kinematic solution of 6-dof robot manipulator 

using MLP neural network with different structures. In this work they have used 

different number of hidden layers for the prediction of the solution. In their first 

configuration or architecture of the MLP model they have used three inputs (X, Y and Z 

coordinated) and six outputs of the joint angles and in second experiment they have 

used four input i.e. Cartesian coordinates along with velocity and calculated outputs are 

six joint angles and their angular velocities. 

Alsina and Gehlot [161] proposed a modular ANN based inverse kinematic solution 

for 4-dof SCARA manipulator. They have assigned each neural module in each link in 

order to find out the inverse kinematics. This approach of neural modules is connected 
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in global system for the updating of the inverse kinematic solution. In this work three 

layered neural network is used with sigmoid ADLINE transfer function. They have 

considered 3-dof and 4-dof manipulator for the simulation and verification of the 

solutions.  

Onozato and Maeda [162] proposed MLP neural network based solution of 4-dof 

SCARA manipulator. They have used basic analytical approach for generating the input 

dataset for learning. A simultaneous perturbation technique is applied for the learning 

of network and calculated the inverse kinematic and dynamics of the manipulator.  

Al-Khedher and Alshamasin [163] proposed neural network based control of SCARA 

manipulator and compared with the PD controller. In this work they have used DH 

algorithm for the evaluation of the inverse kinematic of the robot manipulator. A serial-

parallel structure neural network is used for position control of all joint variables. They 

have used three layered neural network with back propagation supervised learning. 

They have also optimized the number of hidden layer to obtained better result. Later 

simulations are carried out in MATLAB Simulink.  

Mayorga and Sanongboon [164] proposed neural network based approach for inverse 

kinematic solution and effective singularity avoidance of redundant manipulator. In this 

approach they have established some symbolizing matrices, expressing some 

geometrical ideas, so as to gain simple performance index for singularity avoidance.  

These methods of matrices are trained with neural network and finally computed the 

inverse kinematics.  

Daachi and Benallegue [165] proposed neural network based adaptive controller for 

achieving end effector position of redundant manipulator. They have designed the 

controller in Cartesian space so as to overcome the problem of path and motion 

planning that is a well know problem of inverse kinematic. They have 3-dof redundant 

planar manipulator. The unidentified model of the scheme is approached by 

decomposed structural neural network. This approach is used to find adaptive stability 

and the algorithm is based on Lyapunov method with inherent properties of robot 

manipulators.  

Howard and Zilouchian [166] proposed fuzzy logic based inverse kinematic solution 

of 3-dof robot manipulator. In this work hierarchical control based method is used for 

the controlling of robot manipulator. The mapping of Cartesian coordinate with the 

joint coordinate is established by fuzzy logic in order to evaluate each joint variable. 

The hierarchical control with fuzzy logic improves the robustness and also decreases 

the computational cost.  
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Kumar and Irshad [167] proposed neural network based solution for the inverse 

kinematic of 2-dof serial manipulator. They have used MLP neural network structure 

with unsupervised learning strategy. They have generated input datasets using forward 

kinematic equation of the manipulator. Back propagation algorithm is used for the 

training MLP neural network.  

Oyama et al. [168] proposed novel modular neural network with expert system for the 

prediction of inverse kinematic of robot manipulator. In this method each expert 

estimates the continuous part of the function. The proposed method uses forward 

kinematic for the selection of experts. When the no. of considered expert increases the 

computation cost also increases for the inverse kinematics solution, without using any 

parallel computing system. They have used 7-dof redundant manipulator for the 

analysis of kinematics.  

Tejomurtula and Kak [169] proposed structures neural network based inverse 

kinematic solution of planar and spatial manipulator. They have used MLP neural 

network with two hidden layers for training of the network. In this work 

backpropagation algorithm is used for 3-dof planar and spatial manipulator inverse 

kinematic resolution.  

Kim and Lee [170] proposed inverse kinematic solution of redundant manipulator 

using Jacobian matrix and fuzzy logic methods. In this work motion rate resolving 

algorithm is used which is later improved by fuzzy logic. Furthermore, they have 

obtained rough solution of inverse kinematics based on gradient method which is later 

refined by fuzzy logic and extension principle.  

Alavandar and Nigam [171] proposed inverse kinematic solution of 2-dof and 3-dof 

planar manipulator using adaptive neural fuzzy inference system (ANFIS). In this work, 

they have adopted Sugeno type fuzzy architecture and hybridized with simple neural 

network for the prediction of inverse kinematic of planar manipulator.  

Kozalziewicz et al. [172] proposed inverse kinematic of 6-dof manipulator using 

partitioned neural network which is also known as parallel neural network. The selected 

architecture is collected of pre-processing layer and partitioned by modules containing 

devoted neurons.   In this work they have used back propagation algorithm for the 

solution of inverse kinematic.  

Kuroe et al. [173] proposed inverse kinematic prediction of 2-link robot manipulator 

using ANN. In this work they applied supervised learning theorem which is based on 

the Tellegen's theorem.  
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Jack et al. [174] proposed inverse kinematic solution of 3-dof manipulator using feed 

forward neural network technique. In this work they have selected three different 

configuration of neural network.  

Aristidou and Lasenby [175] proposed inverse kinematic solution of various 

configuration of revolute manipulator using novel developed FABRIK (forward and 

backward reaching inverse kinematics) method. FABRIK evades the necessity of 

conventional rotational angle matrices.  

Morten and Erleben [176] proposed inverse kinematic solution of animated character 

using projected-gradient method.  

Zhang et al. [177] proposed dual neural network based kinematics and motion planning 

of redundant manipulator. In this work, linear vibrational inequalities (LVI) based and 

simplified LVI based dual neural network used for the problem resolution. To 

accomplish this drift-free condition is exploited in quadratic form.  

Duguleana et al. [178] proposed neural network based kinematic solution of general 6-

dof serial robot manipulator. In this work dual neural network with Q-learning 

reinforcement method is used for the solution of inverse kinematic and obstacle 

avoidance. 

Daya et al. [179] proposed inverse kinematic solution of 2-dof planar manipulator 

using neural network. In this work neural network architecture consists of six sub neural 

network which is basically extended form of MLP neural network. Back propagation 

algorithm is applied for error minimization.  

Xiulan et al. [180] proposed inverse kinematic solution of 2-dof planar manipulator 

using hybrid neural network. In this work, feed forward neural network is first 

optimized by particle swarm optimization (PSO) technique then used for inverse 

kinematic resolution. This worked is compared with the backpropagation evaluation of 

kinematics with PSO based ANN.  

Aghajarian and Kiani [181] proposed inverse kinematic solution of PUMA 560 robot 

manipulator using adaptive neural fuzzy inference system (ANFIS). In this work MLP 

neural network is hybridized with fuzzy logic to obtain better result of inverse 

kinematic as compared to neural network.  

Shen et al. [182] proposed inverse kinematic solution of 2-link planar manipulator 

using self- configuration fuzzy logic. In this work they have applied fuzzy logic first 

then self-configuration approach is introduced based on input-output pairs.  

Kinoshita et al. [183] proposed inverse kinematic solution for 2-dof planar manipulator 

using MLP neural network. In this work forward propagation algorithm is used for the 



     

  66 

 

estimation of output layer error. The adopted forward propagation rule is based on goal 

signal carried by Newton-like method, and then updating of weight is completed by 

regression coefficient.  

Borboni [184] proposed inverse kinematic solution of simple SCARA manipulator 

using fuzzy logic technique. In this work they have explained several other algorithms 

like parallel chords algorithm, Newton-Raphson and Resconi-Faglia algorithms and 

compared with the fuzzy logic solutions of inverse kinematic.  

Meshref and Vanlandingham [185] proposed forward and inverse kinematic solution 

of 3-dof robot manipulator using immune based neural network. In this work forward 

kinematic is completed by DH-algorithm which is later used as a input for the proposed 

immune based inverse kinematics solution.  

Al-Mashhadany [186] proposed inverse kinematic solution for 6-dof manipulator 

using locally recurrent neural network with considered spherical wrist. The adopted 

method LRNN (locally recurrent neural network) is programmed in MATLAB and 

simulation has been completed in Simulink. In this work Levenberg-Marquardt based 

back propagation learning strategy is applied for high computation and for solution 

accuracy of inverse kinematic.  

Asuni et al. [187] proposed inverse kinematic solution of PUMA robot manipulator 

using self- organizing neural network.  In this work Visio-motor coordination is used 

for learning of neural network. This method is based on biological inspired model that 

imitates human brain power to create relationship between motor and sensory data with 

the help of learning process.  

Yildirim and Eski [188] proposed inverse kinematic solution of PUMA 560 robot 

manipulator using neural network method. In this work they have applied feed forward 

neural network with different learning and weight updating algorithms. First they have 

considered the Online back propagation algorithm and then delta bar delta algorithm 

and finally they have applied quick propagation algorithm for the analysis of invers 

kinematic of robot manipulator.  

Zhang et al. [189] proposed inverse kinematic solution of MOTOMAN robot 

manipulator using neural network. In this work they have used radial basis function 

neural network (RBFNN) for the evaluation of inverse kinematics. The neural network 

system designed is multi input and single output (MISO) based technique.  

Koker [190] proposed inverse kinematic solution of Stanford and PUMA 560 robot 

manipulators using neural network technique. In this work simulated annealing (SA) is 

applied along with the neural network to minimize the error of the joint variables. Three 

Elman's neural network model is used and trained with the help of SA algorithm.  
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Her et al. [191] proposed inverse kinematic solution of 2 and 4-dof planar robot 

manipulator using fuzzy logic together with the genetic algorithm. They have used 

triangular membership function for fuzzy logic and centre of gravity is used for the 

defuzzification. These parameters are later tunes by genetic algorithm for the surety of 

exact inverse kinematic solution.  

Hua et al. [192] proposed inverse kinematic solution of PUMA 560 robot manipulator 

using wavelet neural network model. This method is working on multi-input multi 

output (MIMO) system. Neural network trained is completed by Levenberg-Marquardt 

algorithm.  

Agarwal [193] proposed inverse kinematic solution of redundant manipulator using 

fuzzy c-means system. Novel developed fuzzy clustering method is generalized based 

on weighted scatter metrics and cluster metrics are developed for manipulator.  

Qi and Li [194] proposed inverse kinematic solution of 6-dof robot manipulator using 

support vector machine with genetic algorithm. Support vector coefficient like kernel 

function, insensitive coefficient and penalty factors are tunes by GA.  

Liu and Brown [195] proposed extended approach of fuzzy logic for the solution of 

inverse kinematics of robot manipulator. In this work they have used PUMA 560 robot 

manipulator for the implementation of proposed algorithm.  The proposed algorithm is 

based on fuzzy trigonometry derivatives.  

Martin and Emami [196] proposed real time neural fuzzy trajectory generation of 

EPSON robot manipulator for the rehabilitation purpose of patients with limb 

dysfunction.  

Netto et al. [197] proposed inverse kinematic solution of hexapod robot leg using fuzzy 

system.  In this work hexapod robot's leg consists of 3 revolute joint similar to another 

leg. The kinematic analysis is used to generate data for the black box of fuzzy and 

neural network, particularly forward kinematic is used to generate the training data set 

for fuzzy and neural network.  

Song and Jung [198] proposed kinematic solution of 6-dof anthropomorphic robot 

manipulator using geometric algebra based method. In this work trajectory has been 

generated using fuzzy controller. In this work geometric inverse kinematic solution is 

used for the joint variable control of manipulator. The generated output from the 

adopted technique is later used as an input of fuzzy logic controller.  

Crenganis et al. [199] proposed mathematical modelling of 7-dof human arm like 

manipulator kinematics. In this work both forward and inverse kinematic is presented 

and later compared with the (ANFIS) fuzzy logic solution of the kinematics. They have 

used MATLAB ANFIS toolbox for kinematic resolution.  
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Morishita and Tojo [200] proposed integer inverse kinematic solution of multi-joint 

robot manipulator using fuzzy logic based method. They have evaluated the efficiency 

of the adopted technique and tested it for trajectory generation and control application.  

Neumann et al. [201] proposed inverse kinematic prediction based on neural network 

for humanoid robot ASIMO, in which they focused on bi-manual tool. Considered 

humanoid robot hand is highly redundant in this case and recurrent reservoir learning 

strategy has been implemented.  

Hashim et al. [202] proposed manipulator positioning analysis using artificial 

intelligent techniques. In this work they have adopted three techniques namely fuzzy 

logic, genetic algorithm and neural network to solve inverse kinematics of 6-dof serial 

manipulator. Forward kinematic of serial manipulator has been taken as feedforward 

control on the other hand intelligence method resolves the inverse kinematics problem.  

2.2.4 Optimization approach 

Inverse kinematic closed form solutions for several configurations and simple structures 

are certain. Mathematical approaches are more complicated as per numerical, iterative 

or intelligent based methods and the obtained solution using these methods are not only 

configuration dependent but also matters to ambiguity of the manufacturing errors. 

Therefore, to overcome mathematical complexity and improve the efficiency of the 

solution, it is necessary to adopt engineering optimization methods. Optimization 

methods can be applied to solve inverse kinematics of manipulators and or general 

spatial mechanism. Basic numerical approaches like Newton-Raphson method can 

solve nonlinear kinematic formulae or another approach is predictor corrector type 

methods to assimilate differential kinematics formulae. But the major issues with the 

numerical method are that, when Jacobian matrix is ill conditioned or possess 

singularity then it does not yield a solution. Moreover, when the initial approximation is 

not accurate then the method becomes unbalanced even though initial approximation is 

good enough might not converge to optimum solution. Therefore optimization based 

algorithms are quite fruitful to solve inverse kinematic problem. Generally these 

approaches are more stable and often converge to global optimum point due to 

minimization problem. The key factor for optimization algorithms is to design objective 

function which might be complex in nature. On the other hand, metaheuristic 

algorithms generally based on the direct search method which generally do not need 

any gradient based information. In case of heuristic based algorithms local convergence 

rate is slow therefore some global optimization algorithms like GA, BBO, TLBO, ABC, 

ACO etc. can be gainfully used.  



     

  69 

 

Nearchou [203] proposed inverse kinematic solution of redundant manipulator using 

modified genetic algorithm. They have implemented some assumptions; first they 

considered that the manipulator may be redundant and articulated. Then the second 

assumption is that the manipulator is in moving object of its workspace. And last 

assumption is that they are not considering dynamics of the manipulator. Thereafter, 

genetic algorithm is used in two different manners, first joint displacement (  ) error 

minimization and the second approach is based on positional error of end effector.  

Wang and Chen [204] proposed inverse kinematic solution of PUMA 560 robot using 

optimization method. In this work they have considered positional error and orientation 

error for robot manipulator. The proposed solution is based on cyclic coordinate descent 

(CCD) and Broyden-Fletcher-Shanno (BFS) technique. Total error is calculated based 

on the end-effectors initial and final displacement positions and relative angular 

displacement error.  

Parker et al. [205] proposed inverse kinematic solution of 4-dof PUMA manipulator 

based on genetic algorithm. In this work they have considered two displacement 

minimization problems; first problem of minimization is end-effector displacement 

from initial position to desired position and the second approach is based on the relative 

joint rotation minimization. Both considered approach is solving together using genetic 

algorithm to find out the global solution.   

Kim and Kim [206] proposed trajectory planning of 3-dof revolute manipulator using 

evolutionary algorithm. In this work they have first calculated optimal inverse kinematic of 

3-dof redundant manipulator using Jacobian matrix method. The optimization objective 

function is selected on the basis of joint and end-effector displacement from initial 

Cartesian coordinate to desired location, then evolutionary algorithm is applied to find out 

optimal joint variable.  

Piazzil andVisiolis et al. [207] proposed inverse kinematics solution and trajectory 

planning for D-joint robot manipulator based on deterministic global optimization based 

method. In this work they calculated invers kinematic to find out the desired trajectory 

of 6-dof manipulator. They have applied interval analysis algorithm for the global 

optimization of the piecewise motion of joint variables. 

Ahuactzin and Gupta [208] proposed inverse kinematic solution of redundant 

manipulator using novel developed global optimization algorithm. In this work they 

have used the developed algorithm for point to point movement of end effector and then 

calculated the displacement error using the proposed INVIKIN algorithm. The concept 

of the work is based on the Ariadne‘s Clew Algorithm (ACA) which is basically related 

to motion planning.  
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Chapelle and Bidaud [209] proposed inverse kinematic solution of PUMA robot 

manipulator using genetic programming. In this work, mathematical modelling is 

evolved using genetic programming through given direct kinematic equations. They 

have represented the evolutionary symbolic regression procedure for the inverse 

kinematics of GMF Arc Mate and PUMA manipulators.  

Khatami and Sassani [210] proposed kinematic isotropy for the performance 

evaluation of the 2-dof manipulator, where Global isotropy Index has been used to 

measure of the above isotropy and depends on the entire workspace of the manipulator. 

Genetic algorithm is used to optimize the design parameter of the manipulator and the 

parameter is link length. Later, this approached is employed to optimize globally 

throughout the manipulator workspace.  

Kalra et al. [211] proposed inverse kinematic solution of 2-dof articulated robot 

manipulator using real coded genetic algorithm. In this work they have used Euclidian 

distance norm for the optimization of joint variable of robot manipulator. Displacement 

error minimization objective function is subjected to joint angle constraint in this work, 

and basic steps of real coded genetic algorithm are recombination and mutation.  

Korein and Badler [212] proposed inverse kinematic solution scheme of 3-dof 

redundant manipulator based on reach hierarchy method. In this work they have 

formulated inverse kinematic analytical and then using Lagrangian multipliers for 

making the problem with equality constraint. Thereafter they used numerical based 

optimization method for minimizing the proposed objective function.   

Tabandeh et al. [213] proposed inverse kinematic solution of 3-dof PUMA 

manipulator for the major displacements propose. In this work they have adopted 

genetic algorithm with adaptive niching and clustering. Genetic algorithm's parameters 

are set by adaptive niching method which is later required the forward kinematic 

equations for the solution of inverse kinematic of adopted manipulator. Forward 

kinematic is simply calculated by standard analytical method. Thereafter for processing 

the output filtering and clustering is also added to the genetic algorithm.  

He et al. [214] proposed inverse kinematic solution of 6-dof MOTOMAN robot 

manipulator for positioning of the end-effector.  In this work they have adopted 

adaptive genetic algorithm for optimum placement of the end effector. There are several 

parameters like end-effector displacement error criteria, welding reachability index, 

motion stability index and dexterity index have been considered for making of objective 

function.  

Rajpar et al. [215] proposed inverse kinematic and trajectory generation of humanoid 

arm manipulator using forward recursion with backward cycle computation method.  In 
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this work DH-algorithm is used to formulate the forward kinematics of humanoid arm 

manipulator which is later used as an objective function for the optimization process. 

End effector displacement and the orientation error are completely used as objective 

function for this work.  

Liu and Zhu [216] proposed inverse kinematic solution for 6-dof revolute manipulator 

using real time optimization algorithm. DH-algorithm is used to formulate the 

kinematics equations which are later reduced by the symbolic pre-processing. Later 

Eigen decomposition is used to extract roots from higher degree polynomial kinematic 

equations.  

Jaryani [217] proposed inverse kinematic solution of 2-dof robot manipulator using 

virtual potential field method. In this work, a set of points between initial points to 

desired point is obtained by end-effector with different virtual potential field method. 

An optimum trajectory is created by using pattern search method which explains the 

power of the potential filed method to optimize the value of generated objective 

function. In this work cubic splines are used to create a smooth trajectory joint space 

obtained through inverse kinematic equation. Finally the efficiency and effectiveness of 

the adopted method is presented through simulations.   

Pham et al. [218] proposed inverse kinematic solution of 3-dof robot manipulator using 

Bee algorithm. In this work they have compared three different methods like 

evolutionary algorithm, neural network back propagation method and bee algorithm. 

Neural network structure is optimized by using bee algorithm to predict joint variables 

of the robot manipulator.  

Albert et al. [219] proposed inverse kinematic solution of 3-dof revolute robot 

manipulator using real time genetic algorithm. In this work end-effector displacement 

form its initial point to desired point has been optimized using genetic algorithm. 

Genetic algorithm crossover selection is based on new method which is known as 

dynamic multi-layered chromosome (DMCC) to produce two offspring's. The GUI 

simulation has been verified with GA and DMCC.  

Huang et al. [220] proposed inverse kinematic solution of 6-dof robot manipulator 

using immune genetic algorithm. In this work forward kinematic formulation is 

presented using DH-algorithms. End effector displacement error based fitness function 

is used for implementation of proposed algorithm and results obtained through adopted 

technique are compared with neural network back propagation algorithm.  

Bailón et al. [221] proposed inverse kinematic solution for the 6-dof robot manipulator 

using genetic algorithm. In this work eight degree of polynomial equation is used to c 

plan trajectory for the robot manipulator with the help of DH-algorithm. Genetic 
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algorithm is used for the energy optimization as well as trajectory optimization of robot 

manipulator.  

Paramani [222] proposed inverse kinematic analysis of 12-dof robot manipulator 

compound numerical optimization method. In this work general analytical solution is 

fused with the numerical based method to solve inverse kinematic of 12-dof 

manipulator. The fusion approach is getting rid of with the problem of repeating value 

of numerical solution and generally that gives slow convergence. Therefore in this work 

combination of analytical and numerical solution for higher order polynomial function 

is made.  

Lei-ping et al. [223] proposed inverse kinematic solution of 5-dof robot manipulator 

using genetic algorithm. In this work obstacle avoidance is major criteria, to avoid the 

obstacle it is required to calculate inverse kinematics of the manipulator. Then this 

kinematic equation is modelled as an end effector displacement error based fitness 

function of the genetic algorithm. MATLAB software is used to simulate the adopted 

problem.  

Rubio et al. [224] proposed optimization of path planning of PUMA 560 robot 

manipulator using genetic algorithm. In this work several different criteria for fitness 

function have been taken to solve the path planning of the robot. A first criterion is 

displacement of end effector from its initial position to final or desired position, second 

criteria is based on its configuration. The genetic algorithm uses parallel populations 

with the migration for path planning.  

Galicki [225] proposed inverse kinematic solution of mobile manipulator using penalty 

function based optimization method. This work presents solution on control feedback 

level which is subject to state equality and inequality constraint for the adopted 

manipulator. In this work Lyapunove stability constraint is used for the control 

trajectory generation via inverse kinematic solution.  

Cavdar and Milani [226] proposed inverse kinematic solution of 6-dof PUMA 

manipulator using artificial bee colony algorithm. In this work DH-algorithm is used to 

formulate fitness function for the evaluation of end effector target position based on 

initial given position.  

Lalo et al. [227] proposed inverse kinematic solution of 4-dof planar manipulator using 

liner programming method. In this work the main idea of generating the objective 

function is based on the minimizing the joint variables to reach the desired location. 

Later section deals with the singularity of adopted manipulator and they have also 

presented the formulations for the smooth trajectory generation for the 4-dof planar 

manipulator.  
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Bernal et al. [228] proposed metaheuristic algorithm application in robotics. In this 

work, ant colony optimization algorithm and genetic algorithm are used for path 

planning of robot manipulators end effector. The work is completed with natural 

selection and evolution, through two type of ants namely job and explorer. The basic 

parameter of genetic algorithm is hybridized with ant colony optimization to get global 

solution. . 

Cubero [229] proposed inverse kinematic solution of serial manipulator using blind 

search method. In this work standard analytical solution for forward kinematics is 

require to prepare the fitness function even this can be accomplish with DH–algorithm.  

Konietschke and Hirzinger [230] proposed inverse kinematic solution of highly 

redundant manipulator with combined optimization algorithm. In this work closed form 

solution of inverse kinematics of Justin robot is proposed and later it is combined with 

the proposed optimization algorithm for the global; solution. The proposed optimization 

algorithm is based on Levenberg-Marquardt criteria. 

Zhang et al. [231] proposed inverse kinematic solution of 5-dof robot manipulator 

using hybrid genetic algorithm method. In this work mechanism and body frames are 

presented based on the DH-algorithm, which is later used to formulate the objective 

function. The objective function is based on the end-effectors initial position to the 

desired position displacement error minimization.  

Huang et al. [232] proposed inverse kinematic solution of 7-dof spatial manipulator 

based on the particle swarm optimization (PSO) technique. In this work DH-algorithm 

is used to formulate the forward kinematic of the 7-dof manipulator which is later used 

to formulate the objective function for the particle swarm optimization technique. End 

effectors; initial position ad desired position based displacement error along with the 

orientation error is minimized using PSO.  

Kumar et al. [233] proposed inverse kinematic solution of redundant manipulator 

using Lyapunov method. In this work, optimization approach to solve inverse kinematic 

problem which is converted into nonlinear problem solved by Lyapunov method. An 

improved energy based function is determined for the optimization.  

Xu et al. [234] proposed inverse kinematic of the 4-dof redundant manipulator using 

two different optimization criteria. First optimization criteria is minimization of extra 

redundant dof and other criteria is based on total potential energy minimization of 

manipulator links. They have developed numerical optimization method for calculating 

the trajectory planning computation which is a bit more expensive. Therefore to 

overcome this computation cost a sequential quadratic programming and iterative 

Newton-Raphson method is used.  
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Mazhari and Kumar [235] proposed kinematics and dynamics solution of PUMA 560 

robot manipulator using genetic algorithm, simulated annealing, and generalized pattern 

search methods. They have designed controller for PUMA manipulator using above 

adopted algorithms. Fine tuning is requiring for controller to achieve desired speed of 

simulations. MATLAB/Simulink software is used for simulations in this work.  

Ramírez and Rubiano [236] proposed inverse kinematic solution of 3-dof revolute 

spatial manipulator using genetic algorithm. Forward kinematics formulation has been 

completed by using DH-algorithms and homogeneous matrix multiplication based 

method. Fitness function for the inverse kinematic solution is based on the end effectors 

initial and desired position error which is also known as Euclidean distance norm.  

Feng et al. [237] proposed inverse kinematic solution of 3-dof general robot 

manipulator using Electromagnetism-like and modified Davidson-Fletcher-Powell 

(DFP) method. In this work DH-algorithm is used to formulate the forward kinematics 

of the 3-dof general robot manipulator. The objective function is based on the 

displacement error and orientation error of the end effector. The in total combination of 

the both error is used as a fitness function for the adopted technique. DFP method is 

hybridized using EM algorithm to get the best convergence rate.  

Henten et al. [238] proposed inverse kinematic analysis of 7-link robot manipulator for 

the cucumber picking operation using analytical and numerical algorithm based 

methods. In this work standard DH-algorithm is used for the inverse kinematic solution 

of robot manipulator and later this analytical method is fused with the numerical 

analysis based algorithm to get the optimum solution of the robot manipulator. 

Rokbani and Alimi [239] proposed inverse kinematic solution of 2-dof robot 

manipulator using particle swam optimization algorithm. In this work initial position 

and desired position error based objective function is used which is also known as the 

Euclidean distance norm for end effector. In this approach norm analytical solution of 

forward kinematic is presented which is later used in objective function of PSO 

algorithm.  

Dutra [240] proposed inverse kinematic solution of 2-link planar manipulator using 

simulated annealing method. In this work standard analytical solution of forward 

kinematic is presented using forward kinematic equation the displacement based error 

minimization objective function is used for the simulated annealing approach.  

Zhang et al. [241] proposed inverse kinematic solution of the serial dangerous articles 

disposal manipulator with multiple degrees of freedom using particle swarm gene 

optimization algorithm. In this work position and orientation error of end effector is 

used as a objective function for traditional PSO and modified PSGO method.  
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Rokbani and Alimi [242] proposed inverse kinematic solution of the biped robot leg 

using particle swarm optimization (PSO) method. In this work, two legs with 2-dof are 

considered for the optimization purpose. Moreover both leg manipulator's forward 

kinematic is calculated analytically to obtain fitness function for the PSO.  

Luo and Wei [243] proposed kinematic analysis of 3-dof planar redundant manipulator 

using two different techniques like immune based and immune genetic algorithm 

methods. They have calculated the forward kinematic analytical for the path planning of 

robot manipulator. In later section immune and immune genetic algorithm is used to 

evaluate the efficiency and performance of the obtained solution.  

Taylor et al. [244] proposed kinematics and dynamics of the 3-dof planar and spatial 

manipulator based on the complex optimization method. In this work they have used 

optimization algorithm for the evaluation of the trajectory planning and inverse 

kinematic modelling of the 3-dof manipulator. For trajectory planning cubic splines are 

used for the formulations. It has been concluded that the complex optimization 

algorithm is effective and performing better for path evaluations.  

Števo et al. [245] proposed inverse kinematic solution of 6-dof ABB IRB 6400FHD 

robot manipulator using genetic algorithm. In this work forward kinematic equation are 

generated by using DH-algorithm which is later used to obtain fitness function for 

genetic algorithm. In this work displacement error of end-effector from point to point 

motion has been calculated through adopted method. Objective function containing 

three separate parts which are energy function, operation time and position accuracy to 

get combined fitness function for genetic algorithm.  

2.3 Review analysis and outcomes 

Focusing the attention on the manipulators configuration and their kinematics, the 

review depicts that inverse kinematics has been treated as the gold mine for robot 

designers. Numerous researchers have tried to develop inverse kinematic solution from 

late 80's until now with various approaches and for various configurations of robot 

manipulator. From the beginning robot manipulators are being used for various 

industrial applications like pick and place type work etc., so the major constraint was to 

find joint variables of the manipulator to reach the desired position with known object 

coordinate points. Now a day, robot manipulators applications are widened along with 

the industrial applications to perform in various filed like medical rehabilitation, under 

water applications, assembly task, agriculture, mining, space etc. along with the human 

interactions.   From the literature review it can be summarized that to achieve desired 

position and orientation of the end-effector or tool along with manipulability, dexterity 
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and trajectory planning, the need of inverse and forward kinematics arises. Almost all 

reviewed articles indicated that the human arm is the key point of motivation and leads 

to design of robot manipulator. Now from design point of view it is required to 

calculate kinematics relationship of each joint variables so that the optimum design can 

be obtain. There may be numerous configurations or structures of mechanism or robot 

manipulators but the major properties of designing of any mechanism or manipulator 

are kinematic analysis, workspace analysis, anthropomorphic advent, manipulability, 

trajectory generation and control.  It is also observed that concerning with the 

applications of the robot manipulator the explicit properties are always given 

importance. Working space and manipulability of robot manipulator increases when 

number of joint variables increases which generally cause more complex mathematical 

formulations for inverse kinematic resolutions and difficulty in control of the 

manipulator.  Numerous designs and configurations of the robot manipulators are being 

used in many human environment as well as industrial applications.    

The main aim of the literature survey is to explore different techniques and 

methodologies available to solve inverse kinematics of any configuration of robot 

manipulator. But it is perceived from literature review that DH-algorithm, 

homogeneous transformation matrix, analytical approach, algebraic approach and 

geometric approaches are mostly followed by various researches. Among all the 

developed methodologies the most frequently used approach is algebraic solution of 

inverse kinematic. This method covers conventional algebra along with quaternion, dual 

quaternion, quaternion vector pair, screw algebra, Clifford algebra and Lie algebra. DH-

algorithm and associated parameters are the best way of representation rotation and 

translation of manipulator links and joints. The major drawback in case of conventional 

algebra is its complexities in modelling and obtaining appropriate solutions when the 

robot configuration is complex and has larger degree of freedoms. This problem of 

higher mathematical formulations was reduced by using quaternion and screw algebra. 

Thereafter few elimination methods for reducing the complexity of inverse kinematics 

formulations arise with their effective performance. In case of geometric algebra the 

major problem is when the first three joints of any mechanism or manipulator do not 

create any joint angle in between them, and then it does not give exact solution for the 

inverse kinematic problem. Moreover, the problem becomes unstable if the Jacobian 

matrix is in ill condition or suffering from singularity. Therefore, the conventional 

method are reliable but there is always mathematical complexity problem arises with 

the configurations and dof's of manipulator. To overcome these problem researchers 

adopted many intelligent techniques for soft computing domain such as artificial neural 

network technique, fuzzy logic, hybrid ANN etc. These methods do not require higher 
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mathematical programming and computation cost is also less. Apart from these, 

optimization approach like heuristic, metaheuristic, numerical based approach, etc. have 

shown their efficiency in solving inverse kinematic problem for any configuration of 

robot manipulator. However, there remains a scope to investigate further and work 

towards finding better solutions. Most of the optimization algorithms do not give global 

optimum point because of trapping in local optimum point. Therefore, it is important to 

work and to develop an algorithm so as to achieve global optimum for the fitness 

function.   

2.4 Problem statement 

The prime objective of the present research work is to develop and recommend an 

appropriate solution technique for the inverse kinematic problem of industrial robot 

manipulator with a view to obtain only fewer solutions that could be practically handled 

and used. Further the obtained solutions shown to be optimal and precise with respect to 

orientation and position. The developed technique should yield faster results so as to 

make it suitable for real time applications.  

2.5 Scope of work 

The development in the field of robots and is ever increasing adoption in industries has 

let to bring out many design and operational challenges. Researchers are invading large 

number of macro as well as micro problems to make the robot system as user-friendly 

as possible. Every single component of the robot technology has been, therefore, 

widened to provide research interest in multiple directions. With large number of robot 

manipulator configurations having their own complexity/ simplicity, the development 

of the operational codes has been an interesting and challenging area of research. 

Focusing on industrial robots in vogue, the present research work is envisaged with the 

following scope of the work.  

The detail plan for the research work is given as: 

 Based on the review and analysis of previous literature different configurations 

of industrial robot manipulator have been chosen. In order to include all typical 

configurations, the set of manipulators consists of rigid as well as semi flexible 

configurations, the degree of freedom ranging from 3 to 6.  

 The kinematic modelling and analysis would use mathematical as well as 

intelligent heuristic, single and hybrid in order to find out their suitability in 

view of their modelling simplicity and solution efficiency. Since large numbers 

of such tools are available in the literature, the present work aims at only limited 
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to old tools and new tools. The old tools would be picked up on the basis of their 

performance in similar situations, whereas the new and hybrid tools would be 

chosen on the basis of their features that could match the character of the 

proposed problem.  

 The very purpose of this work is limited to only developing a suitable 

methodology for solving the inverse kinematic problem with relative ease and 

by checking with existing tools and a few recently developed one including 

hybrid ones.  

2.6 Summary 

A broad study of literature reviews from all accessible sources and concerned sprightly 

or indirectly with the present part of work has been made. Some of the additional 

significant work has been extravagantly reviewed so as to expand and direction of the 

research in this area of work. Literature from the past till present time were explored 

and observed to find out the existence of present work scope for supporting the current 

work. A wide-ranging preparation and presentation has been covered throughout the 

completed work for the assistance of the readers.    
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Chapter 3 

MATERIALS AND METHODS 

3.1 Overview 

In order to investigate and compare the inverse kinematic solution of the robot 

manipulator, it is required to select appropriate robot manipulator configuration. A 

robot manipulator can be considered as group of rigid links or bodies which are 

connected by specific joints. Joints may be revolute, prismatic, screw, universal or 

cylindrical etc. These joints provide relative movement in between the rigid bodies or 

links. First link is considered to be joined at the base of robot manipulator while the last 

link is free to move within the limit of workspace. In this work, some benchmark 

manipulators have been considered in such a way that the joint should possess 1-dof 

and joints are either revolute or prismatic. A revolute joint gives freedom to rotate about 

its axis, while prismatic joint offers joint to slide along the axis without any rotation.  

The selected benchmark configurations of robot manipulator have been described in the 

later section. 

3.2 Materials 

Robot manipulators are generally categorised according to their kinematic structure of 

open or closed chains. In chapter 1, different types of robot manipulators have been 

described.  Despite of the types of robots, it is also required to make the classification 

on the basis of joint and links as explained earlier. The main focus of the research is 

primarily on industrial robot manipulators of which simplest configuration are 3-dof 

revolute robot. Considering the deployment of robots in industries for various tasks, it is 

apparent that robot manipulator with SCARA configuration and revolute robot with 6-

dof are mostly used. Therefore, it has been planned to consider only these variety of 

robot manipulators, for abetting the proposed research work and deliberating on the 
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various issues around the problem. Therefore, some selected configurations of robot 

manipulators have been considered for the proposed kinematic analysis (see Tables 

3.1).  

Table 3.1 Configurations of robot manipulators 

In this work both rigid and flexible type robot manipulators with serial structure are 

considered for the kinematic analysis. The serial robot manipulators are extensively 

used in industrial application due to the fact that they offer relatively large work 

envelope as compared to parallel robots with compact structure. This thesis contains 

seven different types of robot manipulator based on the configurations from Table 3.1. 

The selected manipulators are 3-dof revolute planar, 4-dof Adept One SCARA, 5-dof, 

Parm 2, 5-dof ASEA IRb-6, 6-dof PUMA 560, 6-dof, ABB IRB-1400 and 6-dof 

STAUBLI RX 160 L. 6-dof industrial manipulators are selected from Table 1.4 which 

are type A1, A2, B1 and C type of industrial robots. The considered manipulators are 

given as: 

(a) 3-dof revolute planar manipulator with RRR configuration 

(b) 4-dof Adept One SCARA manipulator with the joint configuration of RRPR 

(c) 5-dof Parm2 revolute manipulator with the joint configuration of RRRRR 

(d) 5-dof ASEA IRb-6 robot manipulator 

(e) 6-dof PUMA 560 manipulator with revolute configuration  

(f) 6-dof ABB IRB-1400 robot manipulator 

(g) 6-dof STAUBLI RX 160 L robot manipulator  

The above described robot manipulator configurations are the foundation for the 

research work. From the last many decades researcher are working on these categories 

of robot manipulators as explained in previous chapter. One of the most fundamental 

and important problem for the positioning of the robot manipulator is kinematic 

analysis. Therefore, in this work different configurations of robot manipulators are 

selected for the kinematic analysis.   For the kinematic analysis of robot manipulator 

one should start with the basic 3-dof revolute manipulator. On the other hand, 4-dof, 5-

dof and 6-dof manipulators are mostly preferred in industrial applications due to its 

SN. Kinematic Structure Degree of freedom Joint configuration Kinematic motion 

1 Serial 3 RRR planar 

3 Serial 4 RRPR Spatial 

4 Serial 5 RRRRR Spatial 

5 Serial 6 RRRRRR Spatial 
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high dexterity and large workspace. The detail descriptions of the selected materials are 

presented in the subsection.  

3.2.1 Description of planar 3-dof revolute manipulator 

A planar robot manipulator is can be made of serial chains with revolute or prismatic 

joints. Planar 3-dof revolute manipulator is basically constructed by three revolute 

joints. All the links or rigid bodies of a serial chain are constrained to rotate in same 

plane or parallel to each other. A planar manipulator can only have revolute or 

prismatic joints. Indeed the axes of all revolute joints should be perpendicular to the 

planar chain while the axes of prismatic joint should always parallel to the planar chain. 

Joint variables and parameters of 3-dof planar manipulator are given in Table 3.2. Main 

aim of this chapter is to provide details study of selected manipulators for the kinematic 

analysis and position of the end effector at the desired point. This section deals with the 

different types of planar manipulator and selection of appropriate planar manipulator 

for the kinematic analysis.  

 

 

Figure 3.1 Model of 3-dof revolute manipulator 

Table 3.2 Manipulator joint limits and kinematic parameters 

 

 

 

 

 

 

The mathematical modelling of higher dof or spatial manipulators is quite lengthy and 

time consuming. Planar manipulators are simple to figure kinematic relationship as well 

as for mathematical modelling. The planar manipulators examples represent the 

foundation for designing, kinematic analysis and for controlling purpose without 

consumption of time in mathematical expressions. However, this deals with the 

kinematic analysis of planar manipulator but the spatial description can also be 

Sl. (degree) (mm) (mm) (degree) 

1 0
1 180  0 a1= 100 0 

2 0
2 180  0 a2= 70 0 

3 0
3 180  0 a3= 50 0 

i id ia i
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prolonged. We will start with the example of the planar 3-dof revolute manipulator as 

shown in Figure 3.1. There are many industrial manipulators available which resembles 

3-dof revolute planar configuration. For example, swivel of shoulder, extension of 

elbow and pitch of Cincinnati Milacron T3 manipulator can be treated as 3-dof planar 

manipulator. Similarly, in case of SCARA manipulator without considering of prismatic 

joint will resemble the 3-dof revolute manipulator just to move end effector in up or 

down position. Thus, it is useful to consider 3-dof revolute planar manipulator for the 

inverse kinematic analysis.  

The 3-dof revolute planar manipulator can be geometrically specified with the link 

lengths 321 aanda,a . These links length are basically variables which depend on the 

configuration of robot manipulator. The links lengths can be define in many ways but 

the precise way is the most distal link from distal joint axis to the end effector point or 

tool point. Other important variables are coordinate points of the end effector which 

represents the position and orientation of the end effector. The positions are defined as 

the coordinates (X and Y) while orientation can be define as  angle. The overall 

variables ( andY,X ) defines the pose (position and orientation) of the end effector. 

The proper definition of these variables and parameters can be found in the next 

chapter.  The other possible configuration of planar manipulator can be R-P, P-P, and P-

P-P. In this thesis 3-dof revolute planar manipulator is considered for the further 

kinematic analysis and the detail mathematical modelling of the manipulator is 

presented in next chapter.   

3.2.2 Description of 4-dof SCARA manipulator 

The second selected configuration for forward and inverse kinematic analysis is Adept 

One SCARA manipulator. The SCARA (Selective Compliant Assembly Robot Arm or 

Selective Compliant Articulated Robot Arm) has an RRPR structure. This manipulator 

having 4 joint axes consisting three revolute and one prismatic joint which is unlike 

from the spherical robot manipulator with different applications. The joints first, second 

and fourth are revolute and their joint is prismatic see Figure 3.2 for overview.  The 

joint variable and related kinematic parameters for inverse kinematic solution are 

presented in Table 3.3. The joint motions of Adept One SCARA manipulator can be 

described as: 

(a) Joint 1 motion 

Joint 1 which is also known as shoulder swivel gives the freedom for rotation of 

inner link and the column and the range of the rotation is 300
0
.  
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(b) Joint 2 motion 

Second joint is also referred as elbow joint which is pivot point in between inner 

link and outer link. The range of the motion is 294
0
. This joint is responsible for 

the lefty and righty configuration of the manipulator.  

(c) Joint 3 motion 

The third joint gives the vertical translation of the quill at the end and outer link 

with the standard stroke of 196mm (optional joint stroke may be vary up to 

295mm).  

(d) Joint 4 motion 

The last joint is known as wrist joint which provides the rotation of the quill 

with the range limited to 554
0
. This joint motion is like human hand motion for 

unscrewing a bottle cap or tightening a bolt.  

 

Figure 3.2 Structure of Adept One SCARA manipulator 

Table 3.3 Manipulator joint limits and kinematic parameters 

Sl. (degree) (mm) (mm) (degree) 

1 θ1=±120 0 a1=250 0 

2 θ2=±130 0 a2=150 180 

3 0 d3=150 0 0 

4 θ4 d4=150 0 0 

This manipulator having one parallel shoulder, one elbow and rotatory wrist joints 

along with one linear vertical axis for translation wrist. These configurations of robot 

i id ia i
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manipulator are mostly used in light duty applications due to the high speed and 

precision of the manipulator. Common application areas are: electronic part assembling, 

printing of circuit boards, assembly of tiny parts of electromechanical device, 

assembling of disk drivers. The SCARA manipulators are very compact in design and 

work space is comparatively limited to less than 1000mm. But the payloads of the 

manipulators are ranged to 10-100kg. Therefore, in order to complete the kinematic 

analysis and performance, Adept One SCARA manipulator is selected for research.  

3.2.3 Description of 5-dof revolute Pioneer2 manipulator 

The third configuration considered for the kinematic analysis is Pioneer2 manipulator 

with 5 joint rotations. If the manipulator is redundant or having high dof, than 

conventional solution for inverse kinematic problem becomes more complicated. 

Therefore, considering newly developed Pioneer2 manipulator with 5 joint rotations for 

the kinematic analysis as shown in Figure 3.3. This manipulator is compact, low cost 

and lightweight for the use in research as well as in academic purpose. The actuation of 

the joint is driven by open loop servo motors and gripper which is attached to the end of 

the last link of manipulator.  

 

Figure 3.3 Structure of the Pinoneer arm2 

The major application of this robot is for grasping and manipulation of objects like soda 

cans up to the weight limit of 150grams within the workspace. Joint of the Parm2 are; 

Joints rotations: 

  base rotation 

  shoulder rotation 
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  elbow rotation 

  wrist rotation 

 gripper mount 

 gripper fingers 

All joints are driven by servo motors except gripper fingers. The joint limits and 

parameters taken for the research has presented in Table 3.4. 

Table 3.4 Parm2 manipulator joint limits and kinematic parameters. 

From Table 3.4 parameters and joint variables are listed and the ranges are presented. 

These parameters and joint variables are basis for the forward and inverse kinematic 

analysis of robot manipulator. Later using MATLAB programming the data sets for 

inverse kinematic solution will be used.  

3.2.4 Description of 6-dof PUMA 560 manipulator 

The fourth material for the kinematic analysis is PUMA 560 (Programmable Universal 

Machine for Assembly, or Programmable Universal Manipulation Arm) which is an 

industrial robot with six axis joints see Figure 3.4.  

Table 3.5 Maximum limit of joint variables. 

 

 

 

 

The end effector of the PUMA 560 robot is designed to operate a nominal load of 2.5kg 

with 0.1mm positional repeatability. The workspace of this manipulator is 0.92m from 

the centre axis to wrist centre and the maximum end effector velocity reaches 1m/s.  All 

Joints i (degree) id (mm) ia (mm) i  (degree) 

0 
0

1 180  d1= 150 a1= 60 -90 

1 
0

2 180  0 a2= 145 0 

2 0
3 180  0 0 -90 

3 0
4 180  d2= 125 0 90 

4 0
5 180  0 0 -90 

5 0 d3= 130 0 0 

Joints Limits (degree) 

Waist 320 

Shoulder 266 

Elbow 284 

Wrist pitch 200 

Wrist roll 280 

Wrist yaw 532 
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six joints are actuated through the brushed DC servo motors. The joints limits and 

parameters are given in Table 3.5 and Table 3.6.  

 

Figure 3.4 Structure of PUMA 560 robot manipulator [10] 

Table 3.6 Joint variable and parameters of PUMA 560 robot 

PUMA 560 robots are most used in handling of small objects or parts in industrial due 

to its compact design, high speed ratio, repeatability and flexibility.  Most complicated 

application or assembly of intricate parts can be done by PUMA 560 robot. For 

example PUMA 560 robot can be used for assembling of automotive panels, small 

electric motors, circuit board printings, appliances and so on. From Table 3.6 joint 

variables and parameters for DH-algorithms will be used to calculate the forward and 

inverse kinematic of PUMA 560 manipulator. Later the generated data sets will be input 

for the ANN models training and testing.   

3.2.5 Description of 6-dof ABB IRb-1400 manipulator   

The ABB IRB 1400 is 6-dof industrial robot which is specially desied for the 

manufacturing industries. The configuration of the manipulator is 6-dof revolute with 

Joints i (degree) id (m) ia (m) i  (degree) 

0 
0

1 160  0 0 90 

1 
00

2 45to225   0 0 0 

2 00
3 225to45   d3=0.1244 a2=0.4318 -90 

3 0
4 110  d4=0.4318 a3=0.0203 90 

4 0
5 100  0 0 -90 

5 
0

6 266  0 0 0 
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rigid structure see Table 1.4. Due to its open structure it is easily adopted for the 

flexible automation use and also flexible communication with external systems. This 

type of robot manipulator is known as anthropomorphic with 6-dof mechanism. The 

shoulder joint with roll and pitch motions moves the upper arm
0170  and 

070 ; the 

elbow joint with pitch actions drives the forearm 
070  to 

065 ; and the wrist roll and 

pitch rotations together with the tool-plate roll move the hand (see Figure 3.5). The joint 

limits and associated parameters are listed in Table 3.7 for ABB IRb-1400 manipulator. 

 

Figure 3.5 Configurations of ABB IRB 1400 

Table 3.7 ABB IRB-1400 manipulator joint limits and kinematic parameters 

Joints i (degree) id (mm) ia (m) i  (degree) 

1 0
1 170  0475d1   0 0 

2 0
2 70  0 150 90 

3 00
3 65to70   0 600 0 

4 0
4 150  720d4   120 90 

5 0
5 115  0 0 -90 

6 0
6 300  85d6   0 90 

This type of robot manipulator is mostly used for the arc welding process. The major 

advantages of this type of manipulator are its driveability, repeatability, accuracy with 

zero backlash and high resolution with nominal payloads. Apart from its technical 

advantages, it is commonly used in industries and research work. Therefore, this robot 

manipulator is selected for the forward and inverse kinematic analysis.  
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3.2.6 Description of 6-dof ASEA IRb-6 manipulator   

The ASEA IRB 6 is 5-dof industrial robot manipulator which allows movement in 5-

axis with maximum lfting capacity of 6 kg. This type of manipulator are commonly 

used in industries and research work. The configuration of the manipulator is 5-dof 

revolute with rigid structure see Table 1.4. The structure of the manipulator is rigid with 

maximum reach of 1114 mm. Due to its high dexterity it is accepted in industries for 

material handling, packaging, pick-n-place object, asemblely etc. The basic model of 

this manipulator is presented in Figure 3.6. 

The shoulder joint with roll and pitch motions moves the upper arm 00 130to90  and 
00 130to50 ; the elbow joint with pitch actions drives the forearm 

00 50to130   to 
00 220to25  ; and the wrist roll and pitch rotations together with the tool-plate roll 

move the hand. The joint limits and associated parameters are listed in Table 3.8 for 

ASEA IRb-6 manipulator. 

 

 

Figure 3.6 Configurations of ASEA IRb-6 

Table 3.8 ASEA IRb-6 manipulator joint limits and kinematic parameters 

Joints i (degree) id (m) ia (m) i  (degree) 

1 00
1 13090   070d1   0 90 

2 00
2 13050   0 0.45 0 

3 00
3 50to130   0 0.67 -0 

4 00
4 220to25   0 0 90 

5 0
5 360  095.0d5   0 0 

This manipulator is basically designed to work on automated handling of grinding 

operation and later it became popular for many other applications such as material 

handling, packaging, assembling etc. The structure of this manipulator is compact and 
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rigid. This type of manipulator is also accepted for research work. Therefore, in this 

research work, ASEA IRb-6 robot manipulator is selected for the kinematic analysis.  

3.2.7 Description of 6-dof STAUBLI RX160L manipulator   

The Stäubli RX160L industrial robot manipulator is designed to perform many 

industrial applications such as material handling, welding, spraying, and assembling 

and also for research work. The structure of this manipulator is rigid with 6-axis of 

rotations. The main feature of this robot is high dexterity and flexibility in industrials 

applications. The Stäubli RX160L is resembles the human hand dexterity with 6-dof 

revolute joints.  

 

 

Figure 3.7 Configurations of STAUBLI RX160L 

The major displacement joint angles are similar to PUMA, IRB-1400 but it allows more 

workspace as compared to other adopted manipulator. The maximum payload of this 

manipulator is 28 kg and nominal load is 14 kg. Maxium reach of this manipulator in 

between axis 1 to axis 6 is 2010mm which allows more work envelope. The basic 

model of this manipulator is prese4nted in Figure 3.7 and joint variable with kinematic 

parameters are presented in Table 3.9.  

Table 3.9 STAUBLI RX160L manipulator joint limits and kinematic parameters. 

Joints i (degree) id (m) ia (m) i  (degree) 

1 0
1 180  3170.0d1   0 -90 

2 0
2 05.101  0 0 90 

3 0
3 180  4500.0d3   0 -90 

4 0
4 73.153  0 0 90 

5 0
5 270  4800.0d5   0 -90 

6 0
6 180  0 0 90 
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3.3 Methods 

The inverse kinematic robotics problem has been the focus of kinematic analysis for 

robot manipulators. In order to determine all possible formations to place the end 

effector of a robot manipulator at a particular point in space, one must compute the 

movements associated with each joint variable. In doing so, over the span of several 

decades, authors have faced the following difficulties: 

• The complexity of the inverse kinematic robotics problem is determined by the 

geometry of the robot manipulator. Geometric solutions depends on the first 

three joints should be geometrically exist.  

• Some calculations to solving the inverse kinematic problem cannot be computed 

in real-time.  

• It is not always possible to obtained closed form or single solutions.  

• It is also difficult to find reals solutions for some configuration of robot 

manipulator. Algebraic solutions; kinematic equations transform into higher 

order polynomial in tangent of half angle of joint angels and then all the roots of 

polynomials are numerically determined. ( 6-dof manipulator= 16
th

 order 

polynomial)  

• Numerical solutions- when the Jacobian matrix is singular (ill conditioned) or 

initial approximations is not accurate then there will be unstable solution  

Main aim of this thesis is to find out the joint variables or inverse kinematic solutions 

for the selected benchmark manipulators. The major challenge to calculate inverse 

kinematic problem is, it follows the non-linear transcendental equation with complex 

mathematical formulations. The conventional approaches are time consuming as well as 

difficult to understand as explained earlier. Therefore, after considering all the stated 

problems the main objective is to select the appropriate method for the calculation of 

inverse kinematic problem. The adopted methods and steps for achieving objective have 

been planned as follows:  

3.3.1 Conventional approach 

In the present research work DH-algorithm, homogeneous transformation and 

quaternion vector based methods and their significance for the kinematic analysis have 

been considered. Mathematical modelling of the forward and inverse kinematic 

problem of rigid as well as semi-flexible robot with 3 to 6 joint axis is done. To reduce 

the methematical complexities and computational time quaternion vector based 

kinematic formulations have been done for selected configurations of the robot 
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manipulator. The conventional kinematic equations of the open chain manipulator are 

transformed into consecutive quaternion transformations matrices and then articulated 

using quaternion. The Euler angle representation contains three angles which is not 

enough for regular representation and mostly trapped in singularity problem. Therefore, 

to overcome the problem of regual representation and for singuraity avoidance 

quatrnion algebra is much poerful. The number of mathematical oprations can be 

reduced by quaternion vector based method. From the comparative results of 

homogeneous transformation methods with the quaternion based approach, 

mathematical operations are more in case of homogeneous transformation method. To 

maintain the accuracy of the obtained solution and reduce mathematical operations, 

quaternion based approach are much better. It can be clearly understood that the 

quaternion vector based method delivers a very effective and efficient tool as compared 

to other conventional approach. Further, this approach is cost effective due to its less 

mathematical operations. Comparing with the homogeneous transformation methods, it 

can be observed that quaternion method produces same results with less time 

consumption. Therefore, this method can be applied to any configuration of robot 

manipulator. This can be used as general tool for the kinematic solution of n-dof robot 

manipulator.   

3.3.2 Intelligence based approaches 

The second approach is based on the soft computing methods such as artificial neural 

network, fuzzy logic, hybrid fuzzy and hybrid ANN. These available tools have proven 

their efficiency to solve the non-linear and NP-hard problems. Since inverse kinematic 

solution yields number of alternate solutions, an appropriate iterative or intelligence 

based technique can be used. Forward kinematic solution of any configuration is 

producing exact solution. Therefore, using forward kinematic equations the input for 

the ANN models can be used to train the adopted network. Further trained network 

predicts the inverse kinematic solution of the selected configuration of the robot 

manipulator. Although there are many different neural networks have been tested on 

different configurations of the robot manipulator but the most frequent model is MLP 

neural network. In the present work three different networks is considered for the 

inverse kinematic solution. These adopted network models are not tested over the 

candidate manipulator under present investigation. The models of neural network which 

is used for the inverse kinematic solution are as follows: 

(1) Multi-layered Perceptron Neural Network (MLPNN) 

(2) Polynomial Pre-processor Neural Network (PPN) 
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(3) Pi-Sigma Neural Network  

ANN based prediction of inverse kinematic solutions are later compared with the 

ANSFIS and hybrid ANNs. Similar to ANN models, ANFIS can be trained from the 

generated datasets using forward kinematic equations. The adptabuiluity and learning 

ability increased using neural network into the fuzzy inference system. This method has 

already been applied in several different configurations of robot manipulators. Similar 

to the ANN models, ANFIS structure can be engaged to solve the nonlinear functions, 

NP-hard problems and can also predict the chaotic time series. The learning capability 

of neural networks is generally used to tune the parameters of the fuzzy logic. The 

learning algorithm provides the tunning of the membership function of a Sugeno type 

FIS (Fuzzy Inferencer System) using the input output training data. Therefore, ANFIS 

as well as ANN models with learning capability, adaptability, and handling of nonlinear 

problems which makes it suitable to solve the inverse kinematic problem.  

For all selected configuration of robot manipulator FIS (Fuzzy inference system) 

structure are obtained and applied for prediction of the individual joint angles. Despite 

the advantages of the neural network and ANFIS approach for inverse kinematic 

resolution, a chief concern that often comes is about the convergence and stability of 

the solution. These networks training generally converged into the local optimum point. 

Therefore, neural network models can be hybridize with population based optimization 

algorithm to update the weight and bias of the network. The hybridization scheme has 

already been discussed in later chapter. The MLP neural network is most efficient and 

applied to many industrial manipulators. Therfore, in present work MLP neural network 

is hybridized with several optimization algorithms as well as comparison of gradient 

descent learning algorithms and appropriate scheme. After the application of the 

metaheuristic algorithms and trained neural network, is applied to find out the inverse 

kinematic solution of the robot manipulators. The adopted hybrid ANN models are as 

follows: 

(a) MLPPSO (Multi-layered perceptron particle swarm optimization) 

(b) MLPTLBO (Multi-layered perceptron teacher learner based optimization) 

(c) MLPGA (Multi-layered perceptron genetic algorithm) 

(d) MLPGWO (Multi-layered perceptron grey wolf optimizer) 

(e) MLPCIBO (Multi-layered perceptron crab intelligence based optimization) 

Although there are many advantages of ANN and hybrid ANN that can be easily 

implemented for the inverse kinematic solution but important concern is computational 
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cost and convergence speed of the algorithm. ANN models with back propagation 

learning gives poor performance for the higher dof robot manipulators. The nonlinear 

functional relationship for higher dof problem become unstable and produces 

unacceptable error at the end of learning process.    

3.3.3 Optimization algorithm approach 

Population based optimization algorithms can be gainfully used to find out the inverse 

kinematic solution. The only requirement for the application of optimization algorithms 

is to develop the objective function for the concern manipulator. In chapter 6, objective 

function formulations are discussed in detail which can be further applied with minor 

modifications to any configuration of manipulator. Moreover, the objective function 

produces the candidate solution of each individual joint variable and that can be defined 

by the configuration vector of manipulator with number of point within the workspace 

limit. This method requires only the formulation of the forward kinematic equations of 

the robot manipulator and associated constant or parameters. This method provides 

flexibility to complete many task related to robot manipulator like design, kinematic 

analysis, synthesis of kinematic structures etc. On the other hand, for higher dof and 

complex task of robot manipulator, population based optimization algorithms can be 

used with the generic formulation of objective function. The optimization algorithms 

should be able to handle the problem of nonlinear, NP-hard and multimodal search 

problems. The different optimization algorithms are compared and used to calculate the 

inverse kinematic solutions are as follows: 

(1) Genetic Algorithm(GA) 

(2) Particle Swarm Optimization (PSO) 

(3) Teacher Learner Based Optimization (TLBO) 

(4) Grey Wolf Optimizer (GWO) 

(5) Crab intelligence based optimization (CIBO) 

These stated algorithms are later compared with the novel developed CIBO algorithms. 

Many optimization algorithms require the number of control parameters setting and this 

increases the complexity of the adopted algorithm. The parameter associated with the 

algorithms can make the differences in the results like accuracy, convergence speed, 

efficiency, global optimum point and computational cost. Therefore, to avoid many 

parameter setting, novel effectual nature-inspired metaheuristic optimization technique 

grounded on crab behaviour is proposed (see chapter 6).  The proposed Crab 

Intelligence Based Optimization (CIBO) technique is a population cantered iterative 
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metaheuristic algorithm for D-dimensional and NP-hard problems.  Besides using 

Jacobian matrix for the mapping of task space to the join variable space, forward 

kinematic equations are used. Kinematic singularity is avoided using these formulations 

as compared to other conventional Jacobian matrix based methods.  In general, 

proposed crab based algorithm gives generic solution of the inverse kinematic problem 

for some selected benchmark manipulators. But the proposed CIBO algorithm having 

some limitations like, it cannot apply for real time control and application for higher dof 

manipulator; it takes time to converge in single optimum point, etc. A concise plan of 

approach towards solution of the proposed problem is presented in Table 3.10. The 

table provides under investigation and the proposed tool(s) to be used during the 

research work.  

Table 3.10 Adopted materials and methods 

Methods Materials 

Conventional approaches 

1. HT 

2. QA 

Robots Structures Types 

3-dof revolute Rigid(R-R-R) Planar 

SCARA(4-dof) Flexible(R-R-P-R) SCARA 

Pioneer arm2(5-dof) Rigid(R-R-R-R-R) Spatial 

PUMA 560(6-dof) Rigid (R-R-R-R-R-R) Spatial Type-C 

ABB IRb-1400(6-dof) Rigid(R-R-R-R-R-R) Spatial Type-A1 

ASEA IRb6 (5-dof) Rigid(R-R-R-R-R-R) Spatial Type-A2 

STÄUBLI  RX160 L(6-dof) Rigid(R-R-R-R-R-R) Spatial Type-B2 

Methods Materials 

Intelligence approaches 

 

1. MLPBP 

2. ANFIS 

3. MLPPSO 

4. MLPGWO 

5. PMLTLBO 

6. MLPGA 

7. MLPCIBO 

Robots Structures Types 

3-dof revolute Rigid(R-R-R) Planar 

SCARA(4-dof) Flexible(R-R-P-R) SCARA 

Pioneer arm2(5-dof) Rigid(R-R-R-R-R) Spatial 

PUMA 560(6-dof) Rigid(R-R-R-R-R-R) Spatial Type-C 

ABB IRb-1400(6-dof) Rigid(R-R-R-R-R-R) Spatial Type-A1 

ASEA IRb6 (5-dof) Rigid(R-R-R-R-R-R) Spatial Type-A2 

STÄUBLI  RX160 L(6-dof) Rigid(R-R-R-R-R-R) Spatial Type-B2 

Methods Materials 

Optimization approaches 

 

1. PSO 

2. GWO 

3. TLBO 

4. GA 

5. CIBO 

 

Robots Structures Types 

3-dof revolute Rigid(R-R-R) Planar 

SCARA(4-dof) Flexible(R-R-P-R) SCARA 

Pioneer arm2(5-dof) Rigid(R-R-R-R-R) Spatial 

PUMA 560(6-dof) Rigid(R-R-R-R-R-R) Spatial Type-C 

ABB IRb-1400(6-dof) Rigid(R-R-R-R-R-R) Spatial Type-A1 

ASEA IRb6 (5-dof) Rigid(R-R-R-R-R-R) Spatial Type-A2 

STÄUBLI  RX160 L(6-dof) Rigid(R-R-R-R-R-R) Spatial Type-B2 

Where, HT- Homogeneous Transformation and QA- Quaternion Algebra 
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3.4 Summary  

This chapter presents the discussion of different materials and methods adopted for the 

kinematic analysis. The main purpose of this chapter is to avail the detail description of 

adopted material for kinematic analysis and different methods to achieve the objective 

of the thesis. The detailed derivation of inverse kinematic solution has been given in 

next chapter.   In the result chapter inverse kinematic solution for adopted models of 

manipulator has been tabularised and comparison on the basis of mathematical 

complexity is made over other adopted method.  
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Chapter 4 

MATHEMATICAL MODELLING AND 

KINEMATIC ANALYSIS 

4.1 Overview 

The conventional solution approach of kinematics is important in various fields of 

recent trend and modern technology, extending through computer graphics (e.g. 

animation character analysis) to expansion of space manipulation and simulators. All 

these fields of applications are fundamentally required to evaluate both orientation and 

position of the Cartesian coordinates of end effector and joint variables of robot 

manipulator. To evaluate the position and orientation of end effector and its joint 

variables one can adopt homogeneous transformation matrix method. This method is 

the conventional tool to describe the kinematic relationship of joint and links. 

Moreover, this method of representation is used from many decades for tracing the end 

effector position of the robot manipulator. On the other hand, it is extremely redundant 

for the representation of 6-dof of a system. The redundancy generally consumes more 

computational cost and more storage space. This is also related to the problem of 

mathematical operations which generally creates more complexity. Therefore, many 

alternative methods for the representation of non-inertial coordinates and inertial 

coordinates have been introduced. The proposed method should always be less complex 

and computationally efficient for the representation of mechanism and transformation 

of the system. 

Keeping all in mind, alternative techniques like Epsilon algebra, quaternion and dual 

quaternion, Euler angle, screw transformation, exponential rotation matrix and lie 

algebras are required to overcome the problem of inverse kinematic, for better 

understanding of representations of same and deducing the mathematical operations and 

computational cost to ensure fast and responsive system in real environment. [89], 
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proposed two different approaches to the inverse- kinematics problem for a six-degree-

of-freedom robot manipulator having three revolute joint axes intersecting at the wrist. 

One method uses three rotational generalized coordinates to describe the orientation of 

the body. The other method uses equivalent Euler parameters with one constraint 

equation. These two approaches have been incorporated into two different computer 

algorithms, and the results from each are compared on the basis of computational 

complexity, time simulation, singularity, etc. It was found that Euler parameters were 

less efficient than three rotational angles for solving the inverse-kinematics problem of 

the robot considered, and that the physical singularities caused by the robot mechanism 

could not be eliminated by using either of the two approaches.  

[85], proposed the position of a manipulator expressed as either in joint coordinates or 

in Cartesian coordinates. A new algebra has been defined for the use in solving the 

forward and inverse kinematics problem of manipulators. The properties of the algebra 

are investigated and functions of an epsilon numbers are defined. The Ada language 

was used for illustration because of the ease in implementing the algebra and it is being 

used to solve the forward and inverse kinematics problems. However, the program 

actually used epsilon numbers and used the overloading feature of the Ada language to 

implement the epsilon algebra. By simply changing the order of the algebra, the 

resulting program can compute a time derivative of the end-effector‘s position when 

used-to solve the forward kinematics problem and any time derivative of joint positions 

when used to solve the inverse kinematics problem.  

[111], proposed polynomial continuation method for the analysis of geometric design 

problem of 3-dof revolute manipulator. They have developed the elimination method 

for 4 point precision geometric analysis of the manipulator. In this work, each precision 

point of the end effector has been considered spatial configuration. DH algorithm is 

used in this work for the formulation of the design equations. [143],   proposed solution 

techniques of inverse kinematics using polynomial continuation, Gröbner bases, and 

elimination. They compared the results that have been obtained with these techniques in 

the solution of two basic problems, namely, the inverse kinematics for serial-chain 

manipulators, and the direct kinematics of in-parallel platform devices.  

[98], Proposed dual quaternion algebra based kinematic synthesis of constrained robotic 

system. They have proposed this method for one or more serial chain manipulator 

considering both prismatic and revolute joints. In this research they have used DH 

algorithm and successive screw displacement for determining the joint variables for the 

resolution of end effector position. Then dual quaternions are used to define the 

transformation matrices obtained through DH algorithm to simplify the design 

formulations of different types of manipulators. [108], presented a general method for 
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the classification of 6-dof industrial manipulators based on the kinematic structure and 

their detail analyses of kinematic equations on the basis of classification are given. 

They have adopted the exponential rotation matrix algebra to find out the closed form 

solution of inverse kinematics of robot manipulator. [112], presented pose error analysis 

of SCARA manipulator using screw theory. They have presented the error produced by 

DH algorithm and compared the same with the output of the screw based analysis of the 

manipulation. 

From the discussed literature related to different methods of representations and 

kinematic analysis it can be understood that homogeneous matrix with DH-algorithm 

method is the well-known conventional method. Therefore the above explained method 

can be the benchmark method for the comparison of other alternative methods with 

respect to the efficiency and quality of the solution.   

Therefore, from abovementioned techniques and from the previous literature review 

quaternion, dual quaternion, screw, exponential rotation matrix and Lie algebra are the 

methods which expansively used for the kinematic analysis of manipulators. But still 

detail description and the deep theory behind the representation of these methods are 

not very much clear to most of the researcher. Therefore, further detail derivation of 

quaternion algebra and its application without making it hectic to the readers are 

provided in this section. On the other hand, brief descriptions of other methods are also 

presented.     

4.2 Representation methods and kinematics 

Kinematics can be understood with the system of links or chain connected with joints to 

create relative motion without analysing the torque/forces or sources of the motion. 

Analytical study of the motion of robot link with respect to one fixed coordinate or base 

coordinate system with function of time could be understood as a robot kinematics. The 

kinematics of robot link also provides the study of its higher derivatives like velocity, 

jerk, acceleration etc.  

4.2.1 Kinematic variables and parameters 

A kinematic chain consists of kinematic pair of links which may be connected by revolute 

or prismatic joints subjected to rotational or translational degree of freedom. As explained 

in the literature there exist many approaches for the mathematical representation of 

kinematic chain. The major differences of these methods are the attachment of coordinate 

frames. Therefore Denavit-Hartenberg parameters [246], are commonly used. 

Homogeneous transformation matrix based methods are better for placement of 

coordinate's frames to the links and joint variables. The method consists of four scalars 
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which are known as DH parameters of kinematic chain. These scalars are used to define 

the geometry of link and relative displacement of joint. This method of representations 

reduces the mathematical/arithmetical operations for the kinematic description.  

In the Figure 4.1 the position and orientation of the axis of joint can be determined with 

respected to the base coordinate X,Y and Z with minimum four parameters. To accomplish 

this, common normal OP between axis of joint and Z axis of the base frame has been 

drawn. Therefore the magnitude of common normal is representing length a, which is 

located from the d offset distance of Z axis from the origin of base frame to the point O. θ 

is the angle between OA which is parallel to x-axis with common normal OP. This 

angle represents the rotation about the z-axis which is measure in x-axis to the direction 

of common normal. Angle α represents the rotation of joint axis with PQ which is 

parallel to z-axis and measured in direction of z-axis. These four scalar a, θ, α and d are 

the parameters of Denavit Hartenberg parameters to represents the position of the axis 

of any joint in Cartesian coordinate system. In the later section detail discussion about 

these four parameters are given.  

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Position and direction of a cylindrical joint in a Cartesian coordinate frame 

4.2.2 DH-Parameters  

Now let us observe all characteristic properties of scalar parameters of DH method for 

modelling of considered kinematic pair in Figure 4.2.  Standard method of 

representation has been followed without altering the concern properties of kinematic 

pair.   

From Figure 4.2 link i-1 connected by cylindrical joint with link i, and i+1 link is 

consecutive link with same joint i. The attached coordinate frame with link i is 
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orientated in such a way that the Zi axis is aligned with consecutive link i+1 and Xi-axis 

is aligned with common normal in between i and i+1. Base coordinate frame is situated 

at the intersection of common normal with i+1 axis. And the last coordinate Yi will be 

placed as per right hand rule which is iii xzy  . 

Therefore, from Table 4.1, DH- parameters can be defined as with considered geometry 

and orientation of associated links are as follows: 

 

 

Figure 4.2 kinematic pair and DH parameters 

Table 4.1 DH parameters 

These parameters describes the complete geometry of kinematic pair, if the joint is 

revolute then i ,  d will be only variables and rest of the parameters will be constant 

while in case of prismatic joint di will be the variable and similarly other parameters 

will be constant. From Figure 4.3, the coordinate frame 1i1i1i Z,Y,X  is over imposed 

with frame of i joint so that the distance or offset length di can be described, and the 

i :  Joint rotation parameter, which can be described as the angle of rotation of links i 

and i-1 which is measured from 1iX   to iX  about the 1iZ  .  

ia : Link length parameter, can be represented as length of common normal of links i+1 

and i, measured in the direction of iX , i.e. axis i to i+1.  

id : Link offset parameter; can be described as the distance between common normal 

and the coordinate 1iX  or distance between start points of ia  in the direction of 1iZ 

with the origin of coordinate frame. 

i : Twist angle parameter, can be described as the inclination angle between the axes 

of links measured in iX  direction with 1iZ  to iZ .  
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rotation angle i  from 1iY  with i joint can be understand. The 1iZ   axis of coordinate 

frame is parallel to the imposed consecutive joint i+1, which gives the common normal 

and can be described as link length parameter ia . This link length is perpendicular to 

axes i+1 and i and creates the twist angle i about axes i and i+1.  

Therefore after description of DH parameters, mathematical expression of position of 

coordinate frames and imposed frame can be gives by homogeneous transformation 

matrix i,1iA  , which is successive product of homogeneous transformation matrices 

i,1iB  , and i,1iC  ,  describing all DH parameters. Therefore, DH matrices can be gives 

as,  

i,1ii,1ii,1i C*BA                             (4.1) 
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                                                  (4.2) 

 

Figure 4.3 Denavit-Hartenberg parameters for successive translation and rotation of 

links  
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From equation i,1iA  can be given as,  
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                                         (4.4) 

The above i,1iA   matric can be used for any kinematics chain which contains revolute 

or prismatic joint for the position and orientation analysis. But in case if the joint axes i 

and i+1 are parallel then i  will be zero and the matrix will be given as follows: 
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    (4.5) 

4.2.3 DH-algorithm for frame assignment 

In the DH algorithm, a base coordinate frame 000 Z,Y,X   is attached to fixed based of 

non-moving link and local coordinated will be fixed at each joint of moving links. The 

connected links i-1 to i, where i=1,2,3…n. Therefore, the basic steps of DH-algorithm for 

frame assignment are follows [251]:  

Step 1 Base frame 000 Z,Y,X typically attached to the fixed body at the origin in such 

a way that axis of rotation should coincident with the 0Z  axis, while 0X will be places 

arbitrarily directed towards the perpendicular of the rotation axis or it can be understand 

with the forward reaching direction of manipulator. Using right hand coordinate rule, 

the last 0Y axis can be placed i.e. 000 XZY    

 Step 2 Following the second step the subsequent second joint i, rotation axis will be 

placed in the axis 1iZ  , which goes to coordinates 1i1i1i Z,Y,X  . The second coordinate 

frame origin will be placed on the i-th joint axis at the end of the common normal away 

from the joint axis i-1 to the joint axis i. But in case if the joint axes i and i-1 are 

parallel and joint type is revolute then the origin of the frame will be simply imposed to 

second joint axis confirming that di=o. otherwise in case of prismatic joint the origin of 

frame can be places arbitrarily along the joint axis i. Final condition of intersection of i 

and i-1, the frame will be positioned at the point of intersection.  
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Step 3 For moving link i-1, axis 1iX   where i=2,3,4,..n, will be directed towards the 

common normal axes of joint i and i-1 from i-1 to i. If the joint axes i and i-1 intersect, 

then axis  1iX   will be perpendicular to the intersecting plane and can be directed 

towards arbitrarily perpendicular axis. The rotation angle i , will be chosen by normal 

direction of 1iZ   axis, which is basically represented between the 1iX  and iX  through 

rotation axis 1iZ  . Therefore third axis 1iY  can be evaluated similarly with right hand 

coordinate rule 1i1i1i XZY   .  

Step 4 Now the placement of manipulator end effector coordinate frame eee Z,Y,X will 

be on the reference point of the gripper.  eZ  axis will be directed anywhere in the 

orthogonal plane of eX , similar to step three , eX  will be aligned with common normal 

of 
1ieZ


 and 
ieZ . But in case of revolute joint axis of last joint, eZ  will be considered 

as parallel to the previous joint axis. The last axis will be given as right hand coordinate 

rule eee XZX   

Step 5 Finally after assignment of all coordinate frames for all links i=1, 2, 3, …, n, DH 

parameters can be evaluated and can be written in tabular form given in the next section 

and pictorial view is presented in Figure 4.4 and 4.5.  

4.2.4 Mathematical modelling of 3-dof revolute manipulator 

The mathematical modeling of forward and inverse kinematics of robot manipulator 

using homogeneous transformation matrix method with DH parameters is presented. 

The purpose of this application is to introduce to robot kinematics, and the concepts 

related to both open and closed kinematics chains. The Inverse Kinematics is the 

opposite problem as compared to the forward kinematics, forward kinematics gives the 

exact solution but in case of inverse kinematics it gives multiple solutions. The set of 

joint variables when added that give rise to a particular end effectors or tool piece pose. 

Figure 4.4 (a) shows the basic joint configuration of 3-dof revolute planar manipulator 

and Figure 4.4 (b) represents the model of Cincinnati Milacron T3 and used as 3-dof 

planar manipulator. Figure 4.5 shows the simulation of 3-dof revolute planar 

manipulator using DH procedure. Position and orientation of the end effectors can be 

written in terms of the joint coordinates in the following way, 

Table 4.2 DH-parameters for 3-dof revolute manipulator 
 

 

 

 

 

 

 

 

 

Sl. (degree) (mm) (mm) (degree) 

1 θ1 0 a1 0 

2 θ2 0 a2 0 

3 θ3 0 a3 0 

i id ia i
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               (a)                                    (b) 

Figure 4.4 Planar 3-dof revolute manipulator 

 

Figure 4.5 Coordinate frames of 3-dof revolute manipulator 

Transformation matrix will be given by equation (4.4) 
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i,1i                                          (4.6) 

 

where, 11 cosc  ,  11 sins  , )cos(c 2112  , )sin(s 2112  , 

)cos(c 321123  and )sin(s 321123   

Therefore forward kinematics is given by, 

123312211 cacacaX       (4.7) 
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123312211 sasasaY       (4.8) 

321         (4.9) 

ϕ represents orientation of the end effector. All the angles have been measured counter 

clockwise and the link lengths are assumed to be positive going from one joint axis to 

the immediately distal joint axis.  However, to find the joint coordinates for a given set 

of end effectors coordinates (x, y, ); one needs to solve the nonlinear equations for

321 and,  . 

Inverse kinematics, 

 

21

2
2

2
1

22
2

2222
aa2

aayx
,)c(1(2tana)c,s(2tana


   (4.10) 

     

)k,k(2tana)x,y(2tana 121       (4.11) 

Where, 

2212 cosaak   and 221 sak   

213        (4.12) 

4.2.5 Mathematical modelling of 4-dof SCARA manipulator 

The Denavit-Hartenberg (DH) notation and methodology are used in this section to 

derive the kinematics of robot manipulator. The coordinate frame assignment and the 

DH parameters are depicted in Figure 4.5,  and listed in Table 4.3 respectively, where to 

represents the local coordinate frames at the five joints respectively, represents the local 

coordinate frame at the end-effector, where θi represents rotation about the Z-axis, αi 

rotation about the X-axis, transition along the Z-axis, and transition along the X-axis. 

Table 4.3 The DH Parameters 

Sl. (degree) (mm) (mm) (degree) 

1 θ1=±120 0 a1=250 0 

2 θ2=±130 0 a2=150 180 

3 0 d3=150 0 0 

4 θ4 d4=150 0 0 

 

The transformation matrix Ai between two neighbouring frames Oi−1 and Oi is 

expressed in equation (4.1) as,  

i id ia i
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Figure 4.6 DH frames of the SCARA robot 

 

  

Figure 4.7 Structure of SCARA manipulator through MATLB

 By substituting the DH parameters in Table 4.3 into equation (4.3), the individual 

transformation matrices A1 to A4  can be obtained and the general transformation matrix 

from the first joint to the last joint of the manipulator can be derived by multiplying all 

the individual transformation matrices(
0
T4) and final configuration of SCARA is shown 

in Figure 4.7.  
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Where )Z,Y,X( represents the position and )a,a,a(and),o,o,o(),n,n,n( zyxzyxzyx

represents the orientation of the end-effector. The orientation and position of the end-

(a) (b) 
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effector can be calculated in terms of joint angles and the DH parameters of the 

manipulator are shown in following matrix as: 


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4z3 dpd            (4.17) 
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It is obvious from the representation given in equations (4.15) through (4.18) that there 

exist multiple solutions to the inverse kinematics problem.  The above derivations with 

various conditions being taken into account provide a complete analytical solution to 

inverse kinematics of arm. So to know which solution holds good to study the inverse 

kinematics, all joints variables are obtained and compared using forward kinematics 

solution. This process is been applied for 4321 andd,,   , to choose the correct 

solution, all the four sets of possible solutions (joint angles) calculated. 

4.2.6 Mathematical modelling of 5-dof revolute manipulator 

Similarly Denavit-Hartenberg (DH) algorithm can be used to find out the end effector 

position and orientation. DH parameters and associated values for 5-dof revolute 

manipulator have given in Table 4.4 and assigned to coordinate frames are shown in 

Figure 4.8 and 4.9.   

Table 4.4 The DH parameters 

 

 

 

 

 

Frame i (degree) id (mm) ia (mm) i  (degree) 

0 θ1 d1= 150 a1= 60 -90 

1 θ2 0 a2= 145 0 

2 -90 + θ3 0 0 -90 

3 θ4 d2= 125 0 90 

4 θ5 0 0 -90 

5 0 d3= 130 0 0 
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Figure 4.8 Model and coordinate frames of the manipulator 

 

 

Figure 4.9 Configuration of 5-dof revolute manipulator  

By substituting the DH parameters in Table 4.4 into equation (4.3), the individual 

transformation matrices A1 to A6  can be obtained and the general transformation matrix 

from the first joint to the last joint of the manipulator can be derived by multiplying all 

the individual transformation matrices given in equation (4.19) The orientation and 

position of the end-effector can be calculated in terms of joint angles and the DH 

parameters of the manipulator are shown in following matrix as:

 

(a) (b) 
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   (4.19) 

From equation (4.19), we can get positional equations  

112122312523135413542313 caccaccdcccdsssdscscdX   

 (4.20) 

112122312523135413542313 sacsacsdccsdsscdscssdY    

 (4.21) 

1222325232523354233 dsasdcsdcsdsccdZ     

 (4.22) 

523154154231x scccssccscn       (4.23) 

523154154231y scscscccssn       (4.24) 

5235423z sscccn        (4.25) 

414231x csssco        (4.26) 

414231y ccssso        (4.27) 

423z sco         (4.28) 

523154154231x ccccssscsca       (4.29) 

523154154231y ccssscscssa       (4.30) 

5235423z csscca        (4.31) 

The position and orientation of end effector can be obtained from equations (4.19) 

through (4.30). These equations provide the forward kinematic solution of robot 

manipulator. As we know the complexity of the above equation can lead to more 

mathematical complexity for derivation of inverse kinematics, due to its successive 

mathematical operations. Therefore, it is required to make some techniques to solve 

these equations for inverse kinematic derivation of the manipulator.    

Using equations (4.19) and (4.28),   
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)acacd(cadX 1222321x3       (4.32)           
 

Similarly by using equations (4.22) and (4.33),  

)acacd(sadY 1222321y3       (4.33) 

It can be understand that the 2   and 3  joint angles are totally dependent on the 

position of end effector so it can be fixed as well as it generally creats more effect on 

the entire system. In case if 0)acacd( 122232   then  
x3adX   and 

y3adY    will not be 

equals to zero. If it is more than zero then 1  will be given by,  

)adX,adY(2tana x3y31       (4.34) 

Otherwise, 

)Xad,Yad(2tana x3y31       (4.35)
 

Now for the derivation of 2   and 3 , equations (4.32) and (4.33) can be manipulated as,  

11x322232 ac/)adX(cacd       (4.36) 

11y322232 as/)adY(cacd        (4.37)
 

Now using equations (4.20) and (4.31),  

122232z3 dsasdadZ                  (4.38)    

Now considering (4.36) and (4.37),  

Let        

11x3 ac/)adX(r            (4.39)  

and  

122232z dsasdr             (4.40)              
 

Squaring and adding the equations (4.39) and (4.40),  
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2
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Solving the terms 232232 sscc   in the above equation (4.41), we get 
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Therefore, 3  gives many possible solutions, 
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                       Or, 
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Rewriting equation (4.38) for the solution of 2 ,  

221232 saBsd        (4.44) 
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where, 
11zz2 Bdpad           

Considering the equations (4.36) and (4.37), equation (4.45) is derived as, 

2
3y

2
3x 22 232 )Yda()Xda( =ca +cd     (4.45) 

  Let     2
3y

2
3x 2 )Yda()Xda(=B  ,      

so equation (4.46) can be rewritten as, 

222232 caBcd        (4.46) 

                                       
 

For solution of 21 B,B ,rearranging equation (4.42), (4.43)  

23222321 c )s(d + s )a + c(d = B      (4.47)   

23222322 s )s(d - c )a + c(d = B                             (4.48)             

Diving both side of (4.47) and (4.48), by 2
2

2
1 BB  , equation (4.49) and (4.50) is derived 

as,  
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 where,   
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        and  
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The equation (4.48) and (4.49) are rewritten as, 

  And,    
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       (4.51) 
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      (4.52) 

Therefore,  2)B,B(2tana 212  and
2
2
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232

BB

)acd(




 acos  ±= 

,  

It is clear that    could be in  ,0  or  0, . The range of will depend on the range of

3 . Therefore, if   30  , then 0s3    and 0)sin(   , thus  0  . Then 2  

can be derived as:  

 2 + -  = 2 

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)acd(
cosa)B ,atan2(B     (4.53) 

Otherwise, if 03   , then  0s3   and 0)sin(  , thus 0  . Then the next 

possible solution for 2   is as:  

 2 +
BB

)acd(
cosa + )B ,atan2(B = 

2
2

2
1

232
212



     (4.54) 



     

  112 

 

Now that 321 and,    are known, the solutions for   4 and 5  can be found by using 

the remaining forward kinematics equations. Considering equation (4.28), the value of 

23

z
4

c

o
=  s  , when 0c23       (4.55) 

Similarly from equation (4.26) and (4.27), the possible solution for  4c   is derived as:  
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And again 
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Using equation (4.56) and (4.57) for small value of 1c  , the solution for  4  is 










 


1

23z231z

23

z
4

s

)c/osco(
,

c

o
2tana     (4.58) 

Otherwise for small 1s  ,   










 


1

23z231y

23

z
4

c

)c/osso(
,

c

o
2tana      (4.59)    

Now for solution of 5  , considering equation (4.25), the value of  

423

523z
5

cc

ssn
c


        (4.60)  

Similarly the value of  5s  is derived by using equation (4.31) i.e.,   

423

523z
5

cc

csa
s


       (4.61)                                  

 

Using equation (4.57) in (4.56) and vice versa, the term 5c  and 5s   is rewritten as: 

2
23

2
4

2
23

z23423z
5

scc

asccn
c




        And   

2
23

2
4

2
23

z23423z
5

scc

)nscca(
s




  

Now using this above derivation of  5c  and 5s  , 5   is derived as follows:  

    z23423zz23423z5 asccn,nscca2tana     (4.62) 

As per the inverse kinematic solution of 5-dof revolute manipulator, it can be 

understand similar to SCARA solution, exist multiple solution while in case of forward 

kinematics it provides unique solution. So to know which solution is giving better 

results for all joint variables are evaluated using MATLAB and compared the obtain 

solution in the result chapter.  
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4.2.7 Mathematical modelling of PUMA 560 robot manipulator 

DH parameters and associated values for PUMA 560 manipulator have given in Table 

4.5 and assigned coordinate frames are shown in Figure 4.10,  

Table 4.5 The DH parameters 

 

 

 

 

 

 

 
 

Figure 4.10 Model and coordinate frames of manipulator 

Forward kinematics of the PUMA 560 robot can be given from the transformation 

matrix as: 

31222332341 ds)cacasd(cX      (4.63) 

31222332341 dc)cacasd(sY      (4.64) 

)sasacd(Z 22233234      (4.65) 

54152354231x sss)csscc(ca      (4.66) 

54152354231y ccc)csscc(sa      (4.67) 

5235423z ccscsa        (4.68) 

]ccscs[s]sss)csscc(c[co 646541652364654231x    (4.69) 

]ccscs[c]sss)csscc(c[so 646541652364654231y     (4.70) 

65236465423z ssc)csscc(so      (4.71) 

Frame i (degree) id (m) ia (m) i  (degree) 

0 θ1 0 0 0 

1 θ2 0 0 -90 

2 θ3 d3=0.1244 a2=0.4318 0 

3 θ4 d4=0.4318 a3=0.0203 -90 

4 θ5 0 0 90 

5 θ6 0 0 -90 

(a) (b) 
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]scccs[s]css)ssccc(c[cn 646541652364654231x     (4.72) 

]scccs[c]css)ssscc(c[sn 646541652364654231y     (4.73) 

65236465423z csc)ssccc(sn      (4.74) 

Using forward kinematic equations (4.63) through (4.74), inverse kinematic of PUMA 

560 manipulator can be derived as below,  

)Y,X(2tana)d,dYX(2tana 3
2
3

22
1      (4.75) 

)ab,bda(2tana)dYX,Z(2tana 22
2
3

2
4

2
3

2
3

22
2    (4.76) 

 

where, 
2

2
4

2
3

2
3

2
2

2

2
a2

ddaap
b


 , 222 PzPyPxp  , 2 can also be expressed in other 

form: 

2
)ab,bda(2tanaZ,)dYX(2tana 22

2
2

2
4

2
3

2
3

22
2


  

 (4.77) 

)a,d(2tana)b,bda(2tana 342
2
2

2
4

2
32     (4.78) 

We can separate the arm and wrist if the manipulator has spherical wrist.  Therefor 

rotation matrix for arm can be given by: 

























2323

2311231

2311231

A

c0s

ssccs

scscc

R      (4.79) 

Position matrix for arm can be given by: 











































22423323

31224233231

31224233231

A

asdcas

dc)acdsac(s

ds)acdsac(c

Pz

Py

Px

P     (4.80) 

 

Now general equation for spherical wrist can be evaluated from mapping of z-y-z Euler 

angle into given rotation matrix: 

Z-Y-Z (
654 ,,  ) =G      (4.81) 

Where, RRG T
A  

Therefore we can evaluate elements of matrix G from equation (4.24), 

i323i2231i1231i1 rsr)cs(r)cc(g       (4.82) 

i21i11i2 rcrsg        (4.83) 

i323i2231i1231i3 rcr)ss(r)sc(g       (4.84) 
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Therefore,  










0if),g,g(2tana

0if),g,g(2tana

31323

31323
4

     (4.85) 

Where, 2
32

2
313 gg   

)g,(2tana 3335         (4.86) 










0if),g,g(2tana

0if),g,g(2tana

33132

33132
6

     (4.87) 

                                                                                                      

Similar to previous derivation of forward kinematic, equations (4.63) through (4.74) can 

be implemented for positioning of end effector with known joint variables. Thereafter 

inverse kinematics solution can be found using equations (4.75), (4.76), (4.77), (4.78), 

(4.85), (4.86) and (4.87).  

4.3 Quaternion algebra kinematics 

There have been tremendous work completed in the field of kinematics and recently 

after development of quaternion algebra some identities are added to quaternion for 

enhancing the efficiency and quality of results. Clifford developed dual number concept 

using quaternion algebra and named it dual quaternion algebra which is power full 

mathematical tool for design, synthesis and for computer graphics applications. This 

method is widely used in the field of robot kinematics using few more entities like 

screw displacement, exponential rotation matrix etc. which is used to represent position 

and orientation of mechanism. The most important advantage of quaternion algebra 

reduces the mathematical operations for kinematics analysis as well as gives the 

singularity free analysis. Therefore, it yields numerically stable equations for the 

kinematic and synthesis of mechanism. On the basis of application quaternion algebra 

can be treated as powerful analytical tool for calculation the transformations of 

mechanism and their representation. However, quaternions are not that much popular in 

the field of robot kinematics and dynamics due to the difficulty of interpretation in 3D 

space. Therefore to overcome this problem, the quaternion treatments for real numbers 

using linear algebra and matrices is proposed. In this work two operators related to real 

quaternion, are determined and formulated. These operators are used to translate 

quaternion into the matrix which is easier to understand and for applications.  

Quaternions are basically extensions of complex number having four fractals, with one 

real number with following some rule three imaginary values.  This is also known as 4-

dimentional components.  

 



     

  116 

 

4.3.1 Mathematical background  

In this section mathematical background of quaternion algebra is presented and its 

application for the derivation of forward and inverse kinematics is discussed. 

Quaternion can be used for both rotation and translation of a point, line, etc. with 

references to base coordinate system without use of homogeneous transformation 

matrix. Interpolation of the sequence of rotations and translations are quite easy in 

quaternion as compared to Euler angles. It generally lies in isotropic space that is 

generalization of sphere surface topology. A brief discussion about the quaternion 

mathematics is described in this segment for evaluation of references and to give 

important background for mathematical derivation of inverse kinematic of robot 

manipulator.  

Quaternion algebra implemented by Hamilton, has shown their potential in various 

fields like differential geometry, design, analysis and synthesis of manipulators and 

mechanism, simulations etc. In quaternion algebra having four dimensions and each 

dimension consists of four different scalar numbers, in which one is real number and 

rest are imaginary dimensions. This three imaginary components having value of 

1i   and all are mutually orthogonal to each other, and can be represented as i,j and 

k. therefore quaternion can be represented as; 

)v,r(h

)z,y,x,r(h

kzjyixrh







     (4.88) 

where r is the scalar component of h, and v={x,y,z} form the vector part, in which 
3Rz,y,x,Rr  and i, j , k are mutually orthogonal imaginary units, whose 

composition rule can be stated concisely as follows, 

1=(1,0,0,0), i=(0,1,0,0), j=(0,0,1,0), k=(0,0,0,1) 

where multiplication of imaginary values can be explained as: 

1ijkkji 222  and 
jik,ikj,kji

jki,ijk,kij




 

a) Conjugate of quaternion 

In this case magnitude will be same but the sign of imaginary parts will be changes 

therefore from equation (4.89), conjugate is as follows; 

 

 kz-jy-ix-r=conj(h)      (4.89)  

conj(h) can also be represented as h'.  

 



     

  117 

 

b) Magnitude of quaternion  

Magnitude of quaternion can be explained as, 
2222 zyxrkzjyixrh      (4.90) 

c) Norm 

Norm for quaternion can be explained as  

 'h*hh 2222 zyxr      (4.91) 

d) Quaternion inverse 

Quaternion inverse can be calculated as ratio of conjugate quaternion to its magnitude,  

)'h*h(

'h
h 1        (4.92) 

 

4.3.2 Quaternion rotation and translation 

As it is clear from the above discussion that the quaternion deals with four dimensional 

spaces so it is quite difficult to explain it physically it can be understood with quantity 

that represents a rotation as show in Figure 4.11. Now the rotation of a point in a space 

can be explained from equation (4.93).  








 








 








 








 


2
sin*k

2
sin*j

2
sin*i

2
cosh    (4.93) 

 

 

Figure 4.11 Representation of rotation 

In 4 dimensional space it is quite difficult to imagine 4
th

 axis therefore in Figure 4.11 

(a), a point around the rotation axis (X, Y, Z), that is unit distance from the origin and 

tracing a plane of circle. When the circle is projected to the rotation plane there is point 

p1 rotating by angle   to point p3 which is passing by mid-point p2. Therefore p1 point 

(a) 

(b) 
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is transforming to p3 following by straight line makes  2/cos   and  2/sin  . From 

Figure 4.11 (b) 1p  is the point vector representing initial position and 3p  is the point 

vector final condition to be transformed. Therefore, two quaternions can be represented 

on the basis of above discussed concept. If there is subsequent rotation of two 

quaternions 21 handh  then the composite rotations 21 h*h can be given by equation 

(4.94) as, 

)h*h(*p*)h*h(

)h*h(*p*)h*h(

h*)h*p*h(*hp

1
1

1
2

1
12

1
2

1
1

1
12

1
2

1
1

1
12

3













     (4.94) 

Now pure translations rt  can be done by quaternion operator that is given below, 

1
r pht         (4.95) 

Quaternion transform can be given by, 

112 h*p*hp        (4.96) 

Finally, an equivalent expression for the inverse of a quaternion-vector pairs can be 

written as, 

]hPh,h[H 111        (4.97) 

Where, ))]P(v(v2))P(v(s2[PhPh 1    

where it is implied that the product of any two terms in the above expressions is indeed 

a quaternion product, which is defined in the most general form for two quaternions h1 

= (r1, v1), and h2 = (r2, v2) as 

]vvvrvrvvrr[hh 121221212121      (4.98) 

where 21 vv  and 12 vv  denote the familiar dot and cross products respectively, 

between the three- dimensional vectors v1 and v2. Obviously, quaternion multiplication 

is not commutative, since the vector cross product is not. The set of elements {±1, ±i, 

±j, ±k} form a group (known as the quaternion group) of order 8 under multiplication.  

Similarly the quaternion multiplication for two point vector transformation can be 

calculated as 

11
1

2
121

2
2

1
121 Ph*P*h,h*h)P,h()P,h(HH      (4.99) 

Where, )Pv(v2)Pv(r2Ph*P*h 2
11

2
11

21
1

2
1   

4.3.3 Kinematic solution of SCARA manipulator using quaternion 

SCARA manipulator model and coordinate frames attached to it is shown in Figure 

4.12. Where 4321 andd,  represents the joint variables of revolute and prismatic 

joints and 21 aa  are links lengths. 
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Figure 4.12 SCARA manipulator 

Quaternion for each joint variable can be calculated from eqn. (4.99) 

          ]jSaiCa,kSC[H 1111111 


    (4.10)  

]jSaiCa,kSC[H 2222222 


   (4.101) 

]kd,0,1[H 33 


     (4.102) 

]kd,kSC[H 4444 


    (4.103) 

Therefor inverse quaternion for each joint can be calculated by using equation (4.97),  

]ia,kSC[H 111
1

1 


      (4.104) 

]ia,kSC[H 222
1

2 


     (4.105) 

]kd,0,1[H 3
1

3 


       (4.106) 

]kd,kSC[H 444
1

4 


      (4.107) 

Now calculating quaternion vector products using equation (4.99) and (4.108) 

n1iii H........HHQ       (4.108) 

Where in case of SCARA, n=4. Therefore from equation (4.108) individual quaternions 

can be calculated as, 

]kd,kSC[HQ 44444 


    (4.109) 

]k)dd(,kSC[QHQ 4344433 


  (4.110) 

 

From equation (4.108),     322 MHQ   

Where multiplication of dual quaternion  21 HH   can be calculated using equation 

(4.108) 

]k)dd(,kSC[]jSaiCa,kSC[QHQ 4344222222322 


 

Therefore,  
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]k)dd(jSaiCa,kSC[Q 43222224242 


  (4.111) 

Now calculating 1Q  from equation (4.108), 

]k)dd(jSaiCa,kSC[

]jSaiCa,kSC[QHQ

4322222424

111111211









 

Therefore 1Q  is expressed in equations (4.112), 

]k)dd(j)SaSa(i)CaCa(,kSC[Q 4312211122111241241 


 (4.112) 

Now calculating quaternion vector pairs using equation (4.113) 

j
1

j1j OHO  
      (4.113) 

To solve the inverse kinematics problem, the transformation quaternion of end effector 

of robot manipulator can be defined as 

  ]kZjYiX,kcjbiaw[OT,R 1bebe 


  (4.114) 

Now using equations (4.113) and (4.114), 2O  will be given by,  

1
1

12 OHO    

]kZjYiX,kcjbiaw[]ia,kSC[O 1112 


 

]kZj)SXCY(i)SYaCX(

,k)SwCc(j)SaCb(i)SbCa()ScCw([O

11111

111111112









  (4.115) 

2
1

23 OHO    

]kojoio,kojoiso[O 373635343332313



    (4.116) 

Where, 

)SS(w)SC(c)ScCw(Co 122211231   

)SaCb(S)SbCa(Co 11211232   

)SbCa(S)SaCb(Co 11211233   

)ScCw(S)SwCc(Co 11211234   

212121235 CaCYSCXCZSo   

1136 YCZSo   

2221212137 aZCSaSYSSXCo   

Now, 

3
1

34 OHO    

]kpjoio,kojoioo[O z4645444342414



    (4.117) 
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Where, 364635453444334332423141 oo,oo,oo,oo,oo,oo   

Now all the joint variables can be calculated by equating quaternion vector products 

and quaternion vector pairs i.e. 1Q , 2Q  and 3Q to 1O , 2O  and 3O respectively.  

12211x CaCap       (4.118) 

12211y SaSap       (4.119) 

Therefore, 

2
2

2
1

2
y

2
x

2
2211

2
aapp

C1aa2
tan




      (4.120) 















 














 


22

2
22

2
y

2
x

y

x
1

Sa

)Sa(pp
tana

p

p
tana    (4.121) 

4z3 dpd        (4.122) 

We know that there is no translation in fourth joint of SCARA robot it only gives 

orientation  so we can equate the scalar and vector part of quaternion vector product and 

quaternion vector pair i.e. 1Q , 2Q  and 3Q to 1O , 2O  and 3O respectively.  

From equations (4.115), (4.116) and (4.117),  

121212124 SSwCScSCcCwCC   

121212124 SScCSwSCwCcCS   

cS

wC

124

124



  

4 can be given as,  


















 

1212412124

12124121241
4

SSCC

CSSC
tan     (4.123) 

4.3.4 Kinematic solution of 5-dof revolute manipulator kinematics 

The configuration and base coordinate frame attachment of 5-dof revolute manipulator 

is given in Figure 4.16. Where 54321 and,,,  joint angles for articulated arm and 

321 dandd,d are the link offset. 21 aand,a represents link lengths. 
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Figure 4.13 Base frame and model of 5-dof revolute manipulator 

Now quaternion for successive transformation of each joint can be calculated from the 

equation (4.99) as follows,  

]kdjSaiCa,kSC[H 11111111 


   (4.124)    

]kCaiSa,jSC[H 2222222 


   (4.125)    

]kCdiSd,jSC[H 3434333 


    (4.126)    

      ]id,iSC[H 4444 


                  (4.127)    

]kCdiSd,jSC[H 5656555 


    (4.128)    

Inverse of a dual quaternion can be calculated by equation (4.108), 

]ia,kSC[H 111
1

1 


                                                         (4.129) 

]ka,jSC[H 222
1

2 


                                                         (4.130) 

]kd,jSC[H 433
1

3 


                                                         (4.131) 

]id,iSC[H 444
1

4 


                                                      (4.132) 

]kd,jSC[H 655
1

5 


                                                        (4.133) 

n1iii H........HHQ                                                                  (4.134) 

Where in case of 5-dof revolute manipulator arm n=5. Now calculating quaternion 

vector products using equation (4.108) 

 ]kCdiSd,jSC[HQ 56565555 


                                                         (4.135) 

]kCdiSd,jSC[]id,iSC[QHQ 565655444544 


           (4.136) 

]kCCdjSCdi)Sdd(,kSSjSCiCSCC[Q 546456564545454544 


 

(4.137) 
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]kCCdjSCdi)Sdd(,kSSjSCiCSCC[

]kCdiSd,jSC[QHQ

54645656454545454

343433433









         (4.138) 

]k)CdCCCdSSdSd(jSCd(

i)SdCSdCdSCCddd(

,kSSjSCiCSCC[Q

34354635634456

3435634354644

5345345345343























         (4.139) 

]k)CdCCCdSSdSd(jSCd(

i)SdCSdCdSCCddd(

,kSSjSCiCSCC[

]kCaiSa,jSC[QHQ

34354635634456

3435634354644

534534534534

222222322



























            (4.140) 

Therefore,  

]k)CdSSdSdCCCdSdSdCa(jSCd(

i)SdSCCdSdCSdCdCdCdSa(

,k)SSSSSC(

j)CCSSCC(i)SSSCSC()SCSCCC([Q

324325632432546242422456

34325463243256324242422

53425342

5342534253425342534253422































      (4.141) 

]k)CdSSdSdCCCdSdSdCa(

jSCd(i)SdSCCd

SdCSdCdCdCdSa(

,k)SSSSSC(j)CCSSCC(

i)SSSCSC()SCSCCC([

]kdjSaiCa,kSC[QHQ

324325632432546242422

4563432546

3243256324242422

5342534253425342

5342534253425342

1111111211





































     (4.142) 

Therefore, 

  

]k)CdSSd

SdCCCdSdSdCad(

j)SSCCdSSdSCSdSCd

SCdSCdSSaCSaSaCSCdSCd(

i)SSCdCSCCd

CSdCCSdCCdCCdCCdSaCa(

,k)SSCCCS(

j)CSSSCC(

i)SCSCSC()SSSCCC([Q

3243256

324325462424221

1325461324132561324

124124122122221456456

1456132546

13241325613241241242211

5324153241

5324153241

532415324153241532411















































          (4.143) 

Now calculating vector pair of quaternion using equation (4.144), to solve the inverse 

kinematics problem, the transformation quaternion of end effector of robot manipulator 

can be defined as 
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  ]kZjYiX,kcjbiaw[OT,R 1bebe 


  (4.144) 

Now using equations (4.108) and (4.144), 2O  will be given by,  

1
1

12 OHO    

]kZjYiX,kcjbiaw[]ia,kSC[O 1112 


 

]koj)o(i)o(

,k)o(j)o(i)o()o([O

272625

242322212









    (4.145) 

where, 
1121 ScCwo   

1122 SbCao   

1123 SaCbo   

1124 SwCco   

11125 SYaCXo   

1126 SXCYo   

Zo27   

Now, 

2
1

23 OHO    

]kpjoio,kojoioo[O z3635343332313



    (4.146) 

Where, 

)SS(w)SC(coCo 122221231   

23222232 oSoCo   

22223233 oSoCo   

21224234 oSoCo   

212121235 CaCYSCXCZSo   

1136 XSYCo   

2121212237 SaSYSSXCZCao   

     ]kojoio,kojoioo[O 472745444342414



    (4.147) 

2332213241 oSoCo    

2432223242 oSoCo    

2132233243 oSoCo    

2232243244 oSoCo    
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321321321332

32132132132245

CCaCCXSCCXCZCZSZC

SSaSSYSSSXCSaZSo




 

1146 XSYCo   

32232132132321

321321323247

CSaCSYSCSXCCZCSCa

SCYSSCXCCaSZSo



  

Therefore, all the joint variables can be calculated by equating quaternion vector 

products and quaternion vector pairs i.e. 1Q , 2Q  and 3Q to 1O , 2O  and 3O respectively.  

XSSCdCSCCdCSdCCSd

CCdCCdCCdSaCa

1456132546132413256

13241241242211







                  (4.148) 

Form equation (4.148),  

145622x SSCdSau                                                                                  (4.149) 

XuCSCCdCSdCCSdCCdCCdCCdCa x132546132413256132412412411  
 

x132546132413256132412412411 uXCSCCdCSdCCSdCCdCCdCCdCa  
 

x325463243256324242411 uX)SCCdSdCSdCdCdCda(C  
 

)SCCdSdCSdCdCdCda(

uX
C

32546324325632424241

x
1

 


               (4.150) 

And 

YSSCCd

SSdSCSdSCdSCdSCd

SSaCSaSaCSCdSCd

132546

1324132561324124124

122122221456456










           (4.151) 

From equation (4.151) 

122221456456y CSaSaCSCdSCdu   

YuSSCCdSSdSCSdSCdSCdSCdSSa y1325461324132561324124124122  
 

y3254632432563242424221 uY)SCCdSdCSdCdCdCdSa(S  
 

)SCCdSdCSdCdCdCdSa(

uY
S

325463243256324242422

y

1

 


                    (4.152) 

From equations (4.150) and (4.152) 

)SCCdSdCSdCdCdCda(

uX

)SCCdSdCSdCdCdCdSa(

uY

tan

32546324325632424241

x

325463243256324242422

y

1














 

 

x

32546324325632424241

325463243256324242422

y

1

uX

)SCCdSdCSdCdCdCda(

)SCCdSdCSdCdCdCdSa(

uY
tan













  
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






















)SCCdSdCSdCdCdCdSa(

)SCCdSdCSdCdCdCda(

uX

uY
tana

325463243256324242422

32546324325632424241

x

y

1
      

 (4.153) 

Now for theta 2 

ZCdSSdSdCCCdSdSdCad 3243256324325462424221  
           (4.154) 

324325632432546221x CdSSdSdCCCdCadv                              (4.155) 

ZvSdSd x2424                                                               (4.156) 

x2424 vZSdSd                                                              (4.157) 










 


4

x
2

d

vZ
S                                                                     (4.158) 

As we know that 

]a1,a[2tanaaSin 2   

Therefore using equations (4.154)-(4.158) 






































 










 


2

4

x

4

x
2

d

vZ
1,

d

vZ
2tana                                                   (4.159) 

Similarly, 

34356343546442121212 SdCSdCdSCCdddCaCYSCXCZS         (4.160) 

34354644y SdSCCdddv                                                                         (4.161) 

y356342121212 vCSdCdCaCYSCXCZS                                                   

(4.162) 

35634y2121212 CSdCdvCaCYSCXCZS                                             (4.163) 

3564y2121212 C)Sdd(vCaCYSCXCZS                                               (4.164) 

3

564

y2121212
C

)Sdd(

vCaCYSCXCZS

















                                                  (4.165) 

Therefor theta 3 using equations (4.160)-(4.165),  

 


























































 ,

)Sdd(

vCaCYSCXCZS
,

)Sdd(

vCaCYSCXCXS
12tana

564

y2121212

2

564

y2121212

3 
                         

(4.166) 

Similarly for theta4 and theta 5 

321321

321332321

321321322564

CCaCCYS

CCXCZCZSZCSSa

SSYSSSXCSaZSSdd






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4321321

32133232132132132256

dCCaCCYS

CCXCZCZSZCSSaSSYSSSXCSaZSSd




 




















6

4321321321332321321321322
5

d

dCCaCCYSCCXCZCZSZCSSaSSYSSSXCSaZS
S

              (4.167) 

Therefore from equation (4.167) theta5 will be  

 









































































2

6

4321321321332321321321322

6

4321321321332321321321322

5

d

dCCaCCYSCCXCZCZSZCSSaSSYSSSXCSaZS
1

,
d

dCCaCCYSCCXCZCZSZCSSaSSYSSSXCSaXS

2tana



               (4.168) 

32232132132321

3213213232546

CSaCSYSCSXCCZCSCa

SCYSSCXCCaSZSCCd



  

















56

322321321323213213213232
4

Cd

CSaCSYSCSXCCZCSCaSCYSSCXCCaSZS
C               

(4.169) 

Theta 4 will be given by using equation (4.169),  




































































,
Cd

CSaCSYSCSXCCZCSCaSCYSSCXCCaSZS
,

Cd

CSaCSYSCSXCCZCSCaSCYSSCXCCaSZS
1

2tana

56

322321321323213213213232

2

56

322321321323213213213232

4



             (4.170) 

4.3.5 Kinematic solution of PUMA 560 manipulator using quaternion 

PUMA 560 manipulator model and coordinate frames attached to it is shown in Figure 

4.15. Where 654321 and,,,   represents the joint variables of revolute type 

joints and 32 a,a   are links lengths and 432 dand,d,d  are link offsets. 

 

 

Figure 4.14 PUMA 560 manipulator model 
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Quaternion of each joint variables can be calculated using equation (4.99), that is 

similar process like SCARA. 

]jSdiCd,kSC[H 1212111 


   (4.171) 

]kCaiSa,jSC[H 2222222 


   (4.172) 

]kCajdiSa,jSC[H 33333333 


   (4.173) 

]id,iSC[H 4444 


     (4.174) 

]0,0,0,jSC[H 555 


     (4.175) 

]0,0,0,iSC[H 666 


     (4.176) 

Now calculating inverse of quaternion using equation (4.108), 

]id,kSC[H 211
1

1 


      (4.177) 

]ka,jSC[H 222
1

2 


      (4.178) 

]jd,jSC[H 333
1

3 


      (4.179) 

]id,iSC[H 444
1

4 


     (4.181) 

]0,0,0,jSC[H 55
1

5 


      (4.182) 

]0,0,0,iSC[H 66
1

6 


      (4.183) 

Now calculating quaternion vector products using equation (4.99) and (4.108) 

n1iii H........HHQ   

]kCaiSa,jSC[HQ 22222266 


   (4.184) 

]kSSjCSiSCCC[QHQ 65656565655 


  (4.185) 

]id,kSSjCSiSCCC[QHQ 4645645645645544 










  

 (4.186) 

]k)CaSd(jdi)SaCd(

,k)SCSSSC(j)CCSCSC(

i)SSSSCC()CSSCCC([QHQ

333433334

6453645364536453

6453645364536453433





















 

 (4.187) 

]kGjFiE,kDjCiBA[QHQ 2222222322 


  (4.188) 

Where, 
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)CSSSCSCSCSSCCCCC(A 645326453264532645322    



  i)SCSSSSCSSSSCSCCC(B 645326453264532645322  



  j)CSSSCCCSCCSCCSCC(C 645326453264532645322  



  k)SSSSSCCSSCSCSSCC(D 645326453264532645322  



 i)SaCdSa(E 233234222  



 jdF 32  



 k)CaSdCa(G 233234222  

Now, 

]kGjFiE,kDjCiBA[QHQ *******
211 



  (4.189) 

Where, 

2121
* DSACA   

2121
* CSBCB   

2121
* BSCCC   

2121
* ASDCD   



  i)CSaCCdCSaSdCd(E 132313241221312
*  



  j)SSaSCdSSaCdSd(F 132313241221312
*  



  k)SdCaCa(K 32432322
*  

Now calculating vector pair of quaternion using equation (4.190), to solve the inverse 

kinematics problem, the transformation quaternion of end effector of robot manipulator 

can be defined as 

  ]kZjYiX,kcjbiaw[OT,R 1bebe 


   (4.190) 

Now using equations (4.108) and (4.190), 2O  will be given by,  

1
1

12 OHO    

]kZjYiX,kcjbiaw[]ia,kSC[O 1112 


 

]kZj)SXCY(i)SYaCX(

,k)o(j)o(i)o()o([O

11111

242322212









    (4.191) 

where, 
1121 ScCwo   
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1122 SbCao   

1123 SaCbo   

1124 SwCco   

Now, 

2
1

23 OHO    

]kpjoio,kojoioo[O z3635343332313



    (4.192) 

Where, 

)SS(w)SC(coCo 122221231   

23222232 oSoCo   

22223233 oSoCo   

21224234 oSoCo   

211221235 CaYSaXCo   

21121236 SaXSYCo   

Therefore, all the joint variables can be calculated by equating quaternion vector 

products and quaternion vector pairs i.e. 1Q , 2Q  and 3Q to 1O , 2O  and 3O respectively.  

 




















Yd

dYXX
2tana

3

2
3

22

1
     (4.193) 




















)CdSa(Z

Z)SdCa(a2daaSdCaa
2tana

3433

2
234333

2
4

2
3

2
234332

2
 (4.194) 




















3

2
2

2
4

2
34

3
ak

kdad
2tana     (4.195) 

Where,  

2

2
4

2
3

2
2

2
3

2
2

2
3

2
2

a2

daadZYX
k


  

Similarly for 4 , 5  and 6 , 

]kojoio,kojoioo[O 472745444342414



    (4.196) 

2332213241 oSoCo    

2432223242 oSoCo    

2132233243 oSoCo    
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2232243244 oSoCo    

3732353245 oSoCo    

3732373247 oSoCo    


























43

42

41

44
4

o

o
2tana

o

o
2tana     (4.197) 




















2
44

2
41

2
43

2
42

5

oo

oo
2tana      (4.198) 


























43

42

41

44
6

o

o
2tana

o

o
2tana        (4.199) 

4.3.6 Kinematic solution of ABB IRb-1400 manipulator using quaternion 

The base coordinate frames and configuration of the 6-dof ABB IRB-1400 robot 

manipulator is presented in Figure 4.15. Where   represents the joint variables of 

revolute type joints and    are links lengths and are link offsets. The base frame is fixed 

rotation is fixed for all joint rotations.  

 

Figure 4.15 Configuration and model of ABB IRB-1440 robot manipulator 

The quaternion vector of each joint can be calculated by equation 4.98 and 4.99.  

]kdjSaiCa,kSC[H 11212111 


    (4.200) 

]kSaiCa,jSC[H 2323222 


    (4.201) 

]kCaiSa,jSC[H 3434333 


    (4.202) 

]kd,kSC[H 4444 


     (4.203) 

  

2a 3a

1d

X

Y

Z

1

2

3

4

5

6

4d

5d

4a
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]kd,jSC[H 5555 


     (4.204) 

]0,0,0,kSC[H 666 


      (4.205) 

Inverse of a dual quaternion can be calculated by equation (4.97), 

]kdia,kSC[H 1111
1

1 


      (4.206)                                                                     

]ka,jSC[H 222
1

2 


      (4.207)                                                    

]ka,jSC[H 333
1

3 


      (4.208)                                         

]kd,0,0,kSC[H 444
1

4 


      (4.209)                                  

]kd,0,0,jSC[H 555
1

5 


      (4.210)                        

]0,0,0,kSC[H 66
1

6 


      (4.211) 

Similar to previous work, end effector position can be formulated as, 

6523154142312314231321211 d)cccs)sscsc((ccdscascacaX   (4.212) 

6523154142312314231321211 d)ccss)sccss((csdssassasaY   (4.213) 

)csscc(dsdcacadZ 52354236234233221     (4.214) 

Similar to the kinematic solution of PUMA manipulator, forward kinematics can be 

calculated for STAUBLI RX 160L. Therefore, all the joint variables can be calculated 

by equating quaternion vector products and quaternion vector pairs i.e. 1Q , 2Q  and 3Q

to 1O , 2O  and 3O respectively.  

)X,Y(2tanA1       (4.215) 

if 22  , then, 

)X,Y(2tanA1       (4.216) 

)C,S(2tanA 222       (4.217) 

where,  

36423652354232
2

642365235423
2
2

23642365235423136423652354232
2

s)sscc)ssccc(a2))sscc)ssccc((a

kc)sscc)ssccc(k)s)sscc)ssccc(a(
s




  

 

36423652354232
2

642365235423
2
2

13642365235423236423652354232
2

s)sscc)ssccc(a2))sscc)ssccc((a

kc)sscc)ssccc(k)s)sscc)ssccc(a(
c




  

 

2364236523542322 c)sscc)ssccc(caA   

 

2364236523542322 s)sscc)ssccc(saB   

 

)d/a(2tanA)C,S(2tanA 43
'
3

'
33      (4.218) 



     

  133 

 

where,  

)sscc)ssccc(a2

aaBA
S

6423652354232

2
x

2
2

22
'
3




  

2
3

'
3 s1C   

 

))sscc)ssccc(,csscc(2tanA 64236523542352354234    

 (4.219) 

 

)cscs)ssccc(

,)csscc()sscc)ssccc((2tanA

642365235423

2
5235423

2
6423652354235




 

 (4.220) 

 

)s)ccsss(c)scsc)sccss((

,c)ccsss(s)scsc)sccss(((2tanA

6414231652315414231

64142316523154142316




 

 (4.221) 

4.3.7 Kinematic solution of STAUBLI  RX160L manipulator using quaternion 

The coordinate frames and configuration of the 6-dof STAUBLI RX160L robot 

manipulator is presented in Figure 4.16. Where   represents the joint variables of 

revolute type joints and    are links lengths and are link offsets. The base frame is fixed 

rotation is fixed for all joint rotations.  

 

 

Figure 4.16 Coordinate frame and model of STAUBLI RX160L robot manipulator 

The quaternion vector of each joint can be calculated by equation 4.98 and 4.99.  

]jSaiCa,kSC[H 1111111 


    (4.222) 

]kSaiCa,jSC[H 2222222 


   (4.223) 

]kCdiSd,jSC[H 3333333 


    (4.224) 

]0,0,0,kSC[H 444 


     (4.225) 
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]0,0,0,jSC[H 555 


     (4.226) 

]0,0,0,kSC[H 666 


     (4.227) 

Inverse of a dual quaternion can be calculated by equation (4.98), 

]ia,kSC[H 111
1

1 


     (4.228)                                                                     

]ka,jSC[H 222
1

2 


     (4.229)                                                                      

]kd,jSC[H 333
1

3 


     (4.230)                                                                      

]0,0,0,kSC[H 44
1

4 


     (4.231)                                                                    

]0,0,0,jSC[H 55
1

5 


     (4.232)                                                                     

]0,0,0,kSC[H 66
1

6 


     (4.233) 

Similar to the kinematic solution of PUMA manipulator, forward kinematics can be 

calculated for STAUBLI RX 160L. Therefore, all the joint variables can be calculated 

by equating quaternion vector products and quaternion vector pairs i.e. 1Q , 2Q  and 3Q

to 1O , 2O  and 3O respectively.  




















Yd

dYXX
2tana

3

2
3

22

1
      (4.234) 




















)CdSa(Z

Z)SdCa(a2daaSdCaa
2tana

3332

2
33322

2
3

2
2

2
133321

2
 (4.235) 




















2

22
3

2
23

3
ak

kdad
2tana      (4.236) 

where,  

1

2
3

2
2

2
1

2
2

2
3

2
2

a2

daaZYX
k


  

similarly for 4 , 5  and 6 , 

]kojoio,kojoioo[O 472745444342414



    (4.237) 

2332213241 oSoCo    

2432223242 oSoCo    

2132233243 oSoCo    

2232243244 oSoCo    
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3732353245 oSoCo    

3732373247 oSoCo    

 






















43

42

41

44
4

o

o
2tana

o

o
2tana     (4.238) 

 2
44

2
41

2
43

2
425 oo,oo2tana     (4.239) 






















43

42

41

44
6

o

o
2tana

o

o
2tana     (4.240) 

4.3.8 Kinematic solution of ASEA IRb-6 manipulator using quaternion 

The base coordinate frames and configuration of the 5-dof ASEA IRb-6 robot 

manipulator is presented in Figure 4.17. Where   represents the joint variables of 

revolute type joints and    are links lengths and are link offsets. The base frame is fixed 

rotation is fixed for all joint rotations.  

 

 

Figure 4.17 Coordinate frame and model of ASEA IRb-6 robot manipulator 

The quaternion vector of each joint can be calculated by equation 4.98 and 4.99.  

]kdjSaiCa,kSC[H 11212111 


   (4.241) 

]kSaiCa,jSC[H 2323222 


   (4.242) 

]kCdiSd,jSC[H 3535333 


   (4.243) 

]0,0,0,jSC[H 444 


     (4.244) 

]0,0,0,iSC[H 555 


     (4.245) 

Inverse of a dual quaternion can be calculated by equation (4.108), 
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]kdia,kSC[H 1211
1

1 


     (4.246)                                                                     

]ka,jSC[H 222
1

2 


     (4.247)                                                                      

]kd,jSC[H 533
1

3 


     (4.248)                                                                      

]0,0,0,kSC[H 44
1

4 


     (4.249)                                                                    

]0,0,0,jSC[H 55
1

5 


      (4.250)                                                                     

Quaternion vector products can be calculated by using equation (4.99) and (4.108).  1Q , 

2Q  and 3Q can be calculated using equation above, therefore forward kinematic 

equation can be given as,  

2341651523416234152313212 CSd)SCCSS(aCSdCSaSSaX    (4.251) 

2341651523416234152313212 CCd)SSCSC(aCCdCCaSCaY   (4.252) 

2346523462345233221 SdCCaSdSaCadZ      (4.253) 

Similar to previous work inverse kinematics can be derived using the equations and 

equating 1Q , 2Q  and 3Q to 1O , 2O  and 3O respectively.  
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where, 
32

2
3

2
2

22

3
aa2

)aa(BA
S


 , )S1(C 2

33   

















332122121

3322122121

CaSdZSYCCXCS

SaaCdZCYSCXSS
2tanaC  

34 C        (4.257) 
























)CCSCS(S)CSSCC(C

)SCCCS(S)SSCCC(C
2tana

11

11

5
  (4.258) 

where,  and, are the orientation of the end effector.  
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4.4 Summary  

This chapter delivers the basis of conventional methods for modelling the different 

configurations of robot manipulator in terms of kinematics. The chief purpose of this 

chapter is to provide brief discussion of DH-algorithm and homogeneous matrix 

method for representation of rotation and translation of manipulator link. In the later 

section quaternion application for forward and inverse kinematic solution has been 

given to show the efficiency and easiness of the method. Therefore, inverse kinematic 

solution of 4-dof (Adept One SCARA), 5-dof (Parm2) , 5-dof (ASEA IRb-6), 6-dof  

(PUMA 560), 6-dof (ABB IRB-1400) and 6-dof (STAUBLI RX 160 L) revolute 

manipulators without Euler wrist are solved mathematically using quaternion vector 

based method. The adopted method is compact and efficient tool for representation of 

transformations of end effector. The detailed derivation of inverse kinematic solution 

has been provided to show the mathematical complexity of homogeneous matrix based 

solution of robot manipulator over quaternion. In chapter 7 inverse kinematic solutions 

for adopted manipulator has been tabulated and comparison on the basis of 

mathematical complexity is made over other conventional based method.  
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Chapter 5 

INTELLIGENT TECHNIQUES FOR INVERSE 



5.1 Overview 

Cognitive process of learning and using it for decision making in case of hard to 

understand processes has been well appreciated by the community researchers.  Now a 

days, human beings are grasping the intelligence from the nature and are trying to 

implement into the machine. The purpose is to retrieve end effector position of a robot 

manipulator, which can work in uncertain and cluttered environment on the basis of 

knowledge or information so as to learn complex nonlinear functions from outside 

information without the use of mathematical structures or any geometry. The intelligent 

methods mimic the cognition and consciousness in many aspects like they can learn 

from the experience or previous training then it can be universalize to that domain for 

testing, basic concept is the mapping of input output variables faster than conventional 

methods so as to reduce the computational cost. So the motivation is to reduce the 

computational cost and consequently increase the speed for robust control. On the other 

hand, inverse kinematic mapping for any configuration of robot manipulator can be 

analytically done but the process will be long and slow for real time control.  

As explained in previous chapter the inverse kinematic solution of robot manipulator is 

difficult if following the conventional methods. The difficulty arises due to fact that 

inverse kinematic equations are not true function and gives multiple solutions. In 

addition, input-output mapping of inverse kinematics problem is non-linear and 

tendency of the solution is qualitatively differs when end effector position changes 

within the workspace. On the other hand, conventional methods yields efficient solution 

of inverse kinematics but suffer some drawbacks like complex structure of manipulator 

or higher dof can be time consuming and mathematically difficult to obtain results, 
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singularities occurs in some cases etc. Therefore, considering overall complexity of 

inverse kinematic solution and search for efficient intelligent techniques like artificial 

neural network (ANN), fuzzy logic, ANFIS and hybrid neural network will be fruitful. 

ANNs are extensively adopted technique to solve inverse kinematics problem and 

generally offers an alternative approach to handle complex, NP-hard and ill-conditioned 

problems. ANN models can acquire previous knowledge or information from examples 

and are able to tackle noisy and inadequate data and to learn non-linear problems. Once 

the adopted neural network models are trained then it can perform prediction of output 

with higher computational speed. These models are appropriate in modelling and 

implementation of system with complex mappings. A detail introduction of different 

adopted models of ANN has been presented in this chapter.  

However, ANN is quite adaptive to the system and does not requires higher level of 

programing but apart from this it has some drawback like selection of ANN 

architecture, numerical computation for weight updating (i.e. Gradient descent learning, 

Levenberg-Marquardt based back propagation learning etc.), etc. In contrast above 

discussed nature of ANN models, it is required to set some rules for fuzzy logic to avail 

the advantages of interpretability and transparency of the method. Fuzzy logic requires 

the prior knowledge of the problem and based on the experience of expert decision that 

makes use of linguistic information on the basis of hit and trial method. Therefore, from 

last decades, fuzzy logic becomes an alternative method over conventional techniques 

for nonlinear inverse kinematic solutions. The main idea behind this algorithm is if-then 

logic which is inherent to expert decision. However, this algorithm is based on trial and 

error logic therefore it can be fruitfully merged with ANN models. Fuzzy logic has 

different membership function which is fixed and might be arbitrarily. And the shape of 

the function relies on few parameters and this can be optimized using ANN back 

propagation rule. This method is known as adaptive neural-fuzzy inference system 

(ANFIS). Therefore, hybridization of ANN with fuzzy can give benefits of both 

method. However, the major drawback of ANFIS is stuck in local optimum point. 

Therefore to overcome this problem the wise decision is to adopt some metaheuristic 

algorithm for the optimization of weight and bias of ANN models. Therefore, in this 

chapter hybrid ANN models are developed to overcome the problem of ANN and 

ANFIS with the hybridization strategy.  Detail discussion of ANN models, ANFIS and 

hybrid ANN has been presented in the later section.  

5.2 Application of ANN models 

ANN models like MLP, PPN, Pi-NN etc. generally used to learn joint angles of robot 

manipulator and the data sets are generally generated through some conventional 
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methods like DH-algorithm, homogeneous transformation matrix, algebraic methods 

etc.  Forward kinematic equations are mostly used to train the neural network models 

whereas in this chapter both forward and inverse kinematics equations are used to 

trained the neural network models. The method of learning is based on the standard data 

which generally rely on the workspace of the manipulator. The learning can be 

completed by supervised, unsupervised or both.  ANN monitors the input-output 

relationship between Cartesian coordinate and joint variables based on the mapping of 

data. Inverse kinematics is a transformation of a world coordinate frame (X, Y, and Z) 

to a link coordinate frame (
n21 ,.....,  ). This transformation can be performed on 

input/output work that uses an unknown transfer function.  A simple strategy for input-

output mapping is shown in Figure 5.1 (a) and (b) which are feed forward and back 

propagation for error minimization strategy of ANN models.  

 

 

 

 

(a) 

 

(b) 

Figure 5.1 (a) Feed forwardand (b) back propagation strategy 

In chapter multi-layered neural network, polynomial pre-processor neural network and 

Pi-neural network models are presented. Brief discussions of these adopted models are 

given in the next section.  

5.2.1 Multi-layered perceptron neural network (MLP) 

It is well known that neural networks have the better ability than other techniques to 

solve various complex problems. MLP neural network's neuron is a simple work 

element, and has a local memory. A neuron takes a multi-dimensional input, and then 
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delivers it to the other neurons according to their weights. This gives a scalar result at 

the output of a neuron. The transfer function of an MLP, acting on the local memory, 

uses a learning rule to produce a relationship between the input and output. For the 

activation input, a time function is needed. 

We propose the solution using a multi-layered perceptron with back-propagation 

algorithm for training. The network is then trained with data for a number of end 

effector positions expressed in Cartesian co-ordinates and the corresponding joint 

angles. The data consist of the different configurations available for the arm. The 

different poses of the arm are then used to train a three-layer, fully connected back-

propagation model (Figure 5.2). This result in two sets of weights for each manipulator 

arm after the training session was over. A block diagram of the proposed work is shown 

in Figure 5.2. The signals, ojn, are presented to a hidden layer neuron in the network via 

the input neurons. Each of the signals from the input neurons is multiplied by the value 

of the weights of the connection, wj, between the respective input neurons and the 

hidden neuron. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2Multi-layered perceptron neural network structure 

A neural network is a massively parallel-distributed processor as shown in Figure5.2 

that has a natural propensity for storing experiential knowledge and making it available 

for use. It resembles the human brain in two respects; the knowledge is acquired by the 

network through a learning process, and interneuron connection strengths known as 

synaptic weights are used to store the knowledge [247].  
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Training is the process of modifying the connection weights in some orderly fashion 

using a suitable learning method. The network uses a learning mode, in which an input 

is presented to the network along with the desired output and the weights are adjusted 

so that the network attempts to produce the desired output. Weights after training 

contain meaningful information whereas before training they are random and have no 

meaning [247]. Therefore flow chart of MLP neural network is presented in Figure 5.3 

and basic steps are as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Flow chart for MLPBP 
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Step 4 Calculation of output of neurons as hidden input, 



L

1i

iiijo BX*Wn , 

j=1,2,….L. Calculation of output of hidden neurons as, 

)BX*Wexp(1
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
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Step 5 Error estimation of output layer neurons as, 
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k
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Step 6 If the output of neuron is similar to desired output then end else choose next step 

Step 7  Gradient calculation of hidden and output neurons can be given as      
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Step 8 Sensitivity of hidden and output layers will be given by, for output layer= 
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Step 9 Updating of weight,
T)O(s)k(WW 1LL

oldnew
  and 

L
oldnew s)k(bb   

where L=1,2,,,,l-1 

Step 10 Evaluation of termination criteria if )(ationmintererror  then go to 

step 11 else step 3. 

Step 11 Network is available for testing. 

The network uses a learning mode, in which an input is presented to the network along 

with the desired output and the weights are adjusted so that the network attempts to 

produce the desired output. Weights after training contain meaningful information 

whereas before training they are random and have no meaning.  

Net input of hidden neurons (for L inputs) =  






L

1i

iiijo BX*Wn       (5.1) 

The output, on of a hidden neuron as a function of its net input is described in equation 

(5.1). The sigmoid function is: 
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Once the outputs of the hidden layer neurons have been calculated, the net input to each 

output layer is calculated in a similar manner as in equation (5.2). After calculation of 
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output of output neurons comparison between desired value and network output is made 

on the basis of mean square error as given in equation (5.3), 
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k
ie )DO(E       (5.3) 

If the obtained mean square error is zero then algorithm stops otherwise it goes to the 

error gradient calculation of hidden neuron using the formula as show in equation (5.4),  
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Further error gradient calculation of output layer can be given as, 
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 The weight and bias updating can be performed according to equation (5.6). 

L
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     (5.6) 

The main aim of this overall training process of MLP network is to minimize the mean 

square error of the particular adopted network architecture. Convergence of network 

can be tuned with the parameters  and  . In this work, two hidden layers are 

considered throughout the research with three inputs X, Y and Z, while output is 

depending on the configuration of the robot manipulator.  

5.2.2 Polynomial pre-processor neural network 

Polynomial pre-processor neural network model having distinguished property of 

summation of all inputs as compared to MLP network it follows the Weierstrass 

approximation theorem that states "Any function which is continuous in a closed 

interval can be uniformly approximated within any prescribed tolerance over that 

interval by some polynomial". Figure5.4 depicts a PPN network where X, Y and Z are 

the inputs pattern given by, 

'
m321 ]xx,x,x[X      (5.7) 

For instant considering 2D input pattern X= [x1 x2], to explain the Weierstrass 

approximation theorem wherein polynomial is order of 2, therefore the function of 

decision can be written as  

*'XW)X(D        (5.8) 
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Figure 5.4 Polynomial perceptron network 

Now for m-dimentional pattern of input can be formulized using general quadratic case 

with considering all combination of X elements,  
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For the m-dimensional case, the number of coefficients in a function of r
th

 degreeis 

given by 

!r!m

)!rm(
CN r

rm
mr


       (5.10) 

The input pattern X to the PPN at time n is the channel output vector X (n). This isthen 

converted into X*(n) by passing it into a polynomial pre-processor. Theweighted sum 

of the components of X*(n) is passed through a nonlinear functionsigmoid and pure 

linear function to produce the output as shown in Figure 5.4.  

5.2.3 Pi-Sigma neural network  

PSNN (Pi-Sigma Neural Network) is also a feed forward or multi layered neural 

network consisting of one hidden layer. The major different of PSNN is summing units 

of hidden layer and product unit of output layer as compared to MLPNN. The weights 

of input and hidden layer can be obtained during training process of network while 

hidden layer to output layer weights are fixed to one.  

This network uses two different activation functions at hidden layer linear activation 

function and at output layer non-linear activation function. Therefore pi-sigma network 

evaluates the summing production of input layer and corresponding weights and passes 

through nonlinear activation function. This concept of one hidden layer with two 

activation functions drastically minimizes the total training time for the network. The 

pi-sigma network structure is presented in Figure 5.5.  
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Moreover, summing product layer of pi-sigma network provides higher dimension 

capabilities through the expansion of input dimension into higher dimensional space 

therefore it can easily split nonlinear separable class to linear separable class. Finally 

this network is capable of providing the nonlinear decision with better classification of 

higher dimension data than the normal network. 

 

 

Figure 5.5 Polynomial perceptron network 

Now consider pi-sigma network with n number of inputs, with hn number of hidden 

neurons and one output neuron. hn , defines the order of p-sigma network that is hnn

considering all summing units are related to n weights. The output of the network will 

be given by the product of the output of hn  hidden units which passes through the 

nonlinear activation function; therefore it can be given as,  
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Where  a nonlinear activation functions and kh  is the output of kth hidden layer 

neurons which is then calculated by summing the products of all inputs (x, y, z) with the 

corresponding weight ( ijW ) between ith input and kth hidden unit. Therefore output of 

hidden layer will be given by: 
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5.3 Application of adaptive neural-fuzzy inference system (ANFIS) 

Adaptive Neural-Fuzzy Inference System (ANFIS) developed by Roger Jang [ ]. 

ANFIS is a hybridization of neural network and fuzzy logic methods. This is basically 

type of a feed forward neural network which involves fuzzy inference system through 

the structure of neural network and their neurons. It gives the learning ability of neural 

network to fuzzy inference system.  The method is mainly developed for the evaluations 

of nonlinear functions that generally identifies nonlinear elements on line for control 

system design and predicts chaotic time series.  

On the other hand, (FIS) fuzzy inference system is most popular computing method 

which is based on the fuzzy set theory wherein if-then rule and fuzzy reasoning is 

mainly focused. It is evident from the literature review that FIS having large application 

areas such as control system, classification of data, decision analysis, system of experts, 

prediction of time series, robotics, image processing and recognition. The architecture 

of the FIS consists of three fundamental elements: a rule element, that covers the 

selection of appropriate fuzzy rules: database, that gives the relationship of membership 

function with the established fuzzy rules; then finally reasoning components, which 

gives the appropriate inference method of adopted rules and provides facts to develop 

reasonable output or conclusion. This can take either fuzzy input or crisp value, but 

produced outputs are almost fuzzy sets. But sometimes it is required to have crisp value, 

especially where FIS is used for controller. Therefore, defuzzyfiaction is required to 

decode the crisp value whichever best represent fuzzy set.  

Therefore FIS with neural network is used to update the parameters of neural network 

and can perform mapping of input to output data through appropriate learning 

algorithm. This process of tuning gives the optimize parameter of neural network. 

ANFIS structure is consists of five different layers such as fuzzy layer, normalized 

layer, product layer, defuzzy layer, and summation layer. Basic structure of the ANFIS 

is given in Figure 5.6, in which fixed node is given by circle and adjustable node is 

given by square. Suppose if there is two inputs x and y with one output z then ANFIS 

can be used as a first order Sugeno FIS. There are many fuzzy systems like Sugeno, 

Mamdani etc., but most popular and widely used system is Sugeno model due to its 

high interpretability and computational efficiency with default optimal and adaptive 

tools.  

Therefore first order Sugeno fuzzy rule can be expressed as, 

First rule: 111111 ryqxpZthen,BisyandAisxIf     (5.13) 

Second rule: 222222 ryqxpZthen,BisyandAisxIf    (5.14) 
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Where, iA  and iB are fuzzy sets and ip , iq  and ir  are parameters which is assigned 

during training process. From Figure 5.7 ANFIS structure consists all five layers. Now 

output node will be defined by, 

 

2,1i),x(O
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1
i       (5.15) 

                   4,3i),y(O
iB

1
i                                               

where )x(
iA   and )y(

iB can hold any membership function (MF). For example, in 

this work widely used membership function i.e. Gaussian MF is used throughout the 

work.  
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where ii B,C are the parameters which changes shape of MF.  Second layer nodes are 

represented by Π which is fixed.  
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i      (5.17) 

Each node output represents the firing strength of a rule. 

 

Figure 5.6 Architecture of ANFIS 

Third layer fixed nodes are represented by N. In this layer, the average is calculated 

based on weights taken from fuzzy rules: 
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Figure 5.7 Training of ANFIS structure 
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Where i  are normalized firing strengths. Every ith node in the fourth layer is an 

adaptive node given by following node function,  

2,1i),ryqxp(zO iiiiii
4
i      (5.19) 

The parameters ( iiii randq,p, ) of this layer are consequent parameters. For the fifth 

layer fixed node is given is Σ that calculates all output as summation of all inputs by,   
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5.3.1 Learning algorithm 

In ANFIS there is forward learning process which is based on least square method and 

backward learning is given by gradient descent learning process. If the premise 

parameters are fixed then the output of the ANFIS can be given as,  
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
      (5.21) 

Replacing Eq. (5.19) into Eq. (5.21) gives, 

2211 zzz       (5.22) 

Replacing the fuzzy if-then rules into Eq. (5.22), it becomes: 

)rqxp()ryqxp(z 22221111      (5.23) 

After rearrangement, the output can be written as a linear combination of the 

consequent parameters: 
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222222111111 r)(q)y(p)x(r)(q)y(p)x(z    (5.24) 

Least square method is used to calculate the optimal value of the consequent 

parameters. When premise and consequent both parameters are adaptive, then it 

develops higher search space and this leads to solve convergence of training process. 

Therefore hybrid learning with back propagation is used to solve convergence problem. 

This hybrid learning reduces the search space dimension. At the learning stage, both 

premise and consequent parameters are properly tuned till the desired output achieved 

by FIS. Figure 5.6 represents the training process of ANFIS which is done by using 

MATLAB ToolBox of anfisedit command. In this work different ANFIS structure with 

first order Sugeno fuzzy system is considered for various considered joint variables of 

robot manipulator. Where input is considered as the end effector positions (X, Y and Z) 

and data sets were generated by forward and inverse kinematic equations.  

5.4 Hybridization of ANN with metaheuristic algorithms 

After introduction of simple neural network with the wide application of feed forward 

neural network with back propagation algorithm as well as multi-layered perceptron 

network yields many troubles for training of an algorithm. Back propagation algorithm 

is generally direct search method with weight updating rule to ensure the minimization 

of the error. However, there are many key points, which ensure the algorithm not 

definite for the comprehensively useful for many applications. One of the major key 

point of this algorithm is learning rate parameter which is strictly require to tune 

properly else it creates fluctuation as well as more computational time for training. On 

the other hand, weights updating leads to long training time for the specific application 

of the algorithm. Furthermore, back propagation algorithm ultimately gives slow 

convergence rate if the number of hidden layer increased due to its weight updating 

rule. The most important point is the learning algorithms such as gradient descent 

learning of back propagation algorithm which is generally complex and also contains 

various local minimum points. Therefore, this algorithm mostly gets stuck into local 

minima, which make it utterly dependent on weight updating and initial settings. 

Therefore, hybridization of ANNs can be done in many ways to overcome all stated 

problems. The categorization of the hybridization of ANN can be explained as follows: 

1. Architecture optimization 

2. Weight and bias optimization  

3. Learning rate and momentum parameter optimization  

In case of optimal architecture design, the number of hidden layers is the key factor for 

designing the architecture. To find out the best structure for specific problem training 
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algorithm apart from gradient descent learning an optimization algorithm is used. The 

architecture is dependent on the neurons connections, no. of hidden layers and hidden 

nodes of neural network. Many researches have been done in this field for elementary 

solutions. The structure of the neural network model can be given by upper bound 

method. But in case of boundary it may only provide basic idea about the structure but 

in case of high nonlinear functions and highly dynamic nature can cause the network to 

go beyond the requirement. Therefore it can be used as approximations of the structure 

optimization. There are few determinations for the designing of systematic architecture 

such as constructive and pruning algorithms. Constructive method initially assume the 

neural network with minimum nodes and then start adding nodes and links until to get 

optimum structure while in case of pruning method it assumes the large network which 

proceed with pruning off the nodes and links form the network to get best structure. 

These algorithms are also trapped in local optimum structure because of the non-

differentiable space, complex and multi-model structure. Therefore these algorithms are 

also facing the similar problem like back propagation algorithms.  

Hence the second case i.e. weight and bias optimization is more promising and stable 

method to optimize the neural network for better training than optimizing of 

architecture. In case of weight and bias optimization algorithms the architecture is 

constant before the training of the neural network model. The training algorithms can be 

application of any metaheuristic algorithms which make sure the global optimum point 

for the specific problem. Therefore the main aim of the training algorithm is to find an 

appropriate connection weight and bias to reduce overall error. Therefore global 

optimization algorithms like, PSO, WDO, GSA, Evolutionary algorithms, GWO, 

TLBO, BBO, ABC, ACO etc. are quite healthy to use for the training and finding out 

the optimum weight and bias for the neural network. The common factor for all global 

optimization algorithms is population based stochastic method and can easily avoid 

local optimum points to get best solution. Moreover, these algorithms can applied to 

any model of neural network with different number of activation functions.  

In this work, PSO, GA, GWO, CIBO, TLBO etc. algorithms are applied using weight 

and bias based optimization criteria and multi-layered perceptron neural network (MLP) 

is used throughout the research. The hybrid ANN can be called as MLPPSO (multi-

layered perceptron particle swam optimization), MLPGA, MLPGWO etc. Therefore to 

design proper algorithm objective function or fitness function is most important factor 

for optimization. In the later section mean square error based objective function 

formulation is presented. Now hybridization of metaheuristic or population based 

algorithms method can be start with the introduction of the adopted algorithms with the 
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specific model of neural network. Therefore the basic of population based stochastic 

algorithms are explained below.  

5.4.1 Particle swarm optimization 

PSO is a population-based optimization algorithm imprinted from the simulation of 

social behaviour of bird flocking.  The population comprises of the number of particles 

(candidate solution) which flies in search space to find the out global optimum point. 

Initial approximation of particles for position and velocity in search space is randomly 

chosen as shown in Figure 5.8.  Each individual flies in the search space with specific 

velocity and carrying position, simultaneously each particle update its own velocity and 

position based on the best experience of its own and the social population [248]. The 

basic steps with mathematical modelling of Particle Swarm Optimization Algorithm are 

shown in flowchart: 

 

 

Figure 5.8 Flow chart for PSO  
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5.4.2 Teaching learning based optimization (TLBO)  

Teaching-Learning-Based Optimization (TLBO) is population based algorithm works 

on the effect of impact of a teacher on learners. In this algorithm population is 

considered as group of student where each student either learns from teacher called as 

teacher phase and they also gain some knowledge from other classmates or students that 

are learners phase.  Output will be in terms of results or grades. In these algorithms 

different subjects for learner resembles the variables and learner results is equivalent to 

the fitness function for any problem and finally the teacher will be considered as the 

best solution achieved so far. There are several other population based methods have 

been successfully implemented and shown efficiency. The details about this algorithm 

can be found on reference.  [249].  

5.4.3 Objective function for training MLP 

Analytical solution of the inverse kinematics problem is highly non-linear and 

mathematically complex in nature. An ANN model does not require higher 

mathematical calculations and complex computing program. ANN requires initial 

selection of weight, which is vigorous to yield local optima, convergence speed and 

training time for the network. As we know that the bias and weight for each neuron 

directly affect the output vector of neural network. Generally, weight is randomly 

selected in the range of 0 to 1, after activation function weight of each neuron adjusted 

for the next iteration.  The heuristic optimization algorithm optimizes the weights of the 

neural networks. When certain termination criteria are met, or a maximum number of 

iterations are reached, the iterations cease.  From the previous research hybrid 

optimization, algorithm started evolving with high and remarkable advances in their 

performances, [250]-[251].  These techniques produce better outflow from local 

optimum and testified to being more operative than the standard method. All these 

approaches yield better results when neuron weight is adjusted.  In this work, optimized 

weight and bias for each neuron using various metaheuristic algorithms are used for the 

training of MLP network.   For the training of network, it is important to have all 

connection weights and biases in order to minimize the mean square error.   

 

5.4.4 Objective function  

From [24], in each epoch of learning, the output of each hidden node is calculated from 

equation (5.35). 
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Where 



n

1i

jiijk bx.wn ,n is the number of the input nodes, wij is the connection 

weight from the ith node in the input layer to the jth node in the hidden layer, bj is the 

bias (threshold) of the jth hidden node, and xi is the ith input. After calculating outputs 

of the output nodes from equation (5.36).  
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Where, wkj is the connection weight from the jth hidden node to the kth output node and 

bk is the bias (threshold) of the kth output node. 

Finally, the learning error E (fitness function) is calculated from equation (5.37-5.38). 
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Where, q is the number of training samples, k
iy is the desired output of the ith input unit 

when the kth training sample is used, and k
io is the actual output of the ith input unit 

when the kth training sample is used. Fitness function can be calculated from equation 

(5.39). Where the number of input nodes is equal to n, the number of hidden nodes is 

equal to h, and the number of output nodes is m. Therefore, the fitness function of the i
th

 

training sample can be defined as follows: 

)X(E)X(Fitness ii       (5.39) 

5.4.5 Weight and bias optimization scheme 

To represent weights and biases it is required to indicate the encoding strategy after 

defining the fitness function for hybrid ANN, [252]-[253] From the literatures, there are 

three encoding strategies for representing the weights and biases. First strategy is vector 

method in which every agent is encoded as a vector. For training MLP each agent 

encoded as a vector to represent all weights and biases for the MLP structure (see 

Figure 5.10). The optimization of weight and bias using PSO as shown in Figure 5.10 

can be implemented for all other optimization algorithms.  In matrix encoding, each 

agent is encoded as a matrix. In case of binary encoding, agents are encoded as strings 

of binary bits. From the literatures [250]-[251],  in case of vector encoding strategy, the 

encoding is simple, but after calculation of output of MLP, it is required to decode each 

particle into weight matrix, therefor decoding process becomes complicated. Vector 

encoding strategy is generally used in the function optimization field. In case of matrix 

encoding strategy, the decoding is simple for weight matrix but the encoding is difficult 
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for neural networks with complex structures. This method is very suitable for the 

training processes of neural networks because the encoding strategy makes it easy to 

execute decoding for neural networks. In the last strategy, each particle should represent 

in the binary form, so encoding and decoding becomes complicated for the complex 

network structure.   An example of this encoding strategy for the MLP has given in 

Figure 5.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9 Flow chart for MLPPSO  
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Figure 5.10 MLP network with structure 3-3-1 
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Where W1 is the hidden layer weight matrix, B1 is the hidden layer bias matrix, W2 is 

the output layer weight matrix, W2‘ is the transpose of W2, and B2 is the hidden layer 

bias matrix. 

5.5 Summary 

This chapter delivers the basics of artificial neural network technique and their 

hybridization scheme with metaheuristic optimization algorithms. Furthermore, 

different types of multi-layered perceptron network, their learning abilities are 

discussed. Moreover, it is also covered the combination of evolutionary algorithms with 

MLP neural network as well as comparison of gradient descent learning algorithms and 

appropriate scheme. In current scenario hybridization of ANNs with metaheuristic 

algorithms are popular and reaching to the advanced stage of the soft computing 

techniques to handle non-linear, NP-Hard problems, complex mathematics and noisy 

problems. Therefore in the later section, few different type of metaheuristic algorithms 

such as PSO, GA, GWO, and CIBO is discussed here which is later used to obtained the 

optimized weight and bias of the adopted neural network model. After the application 

of the metaheuristic algorithms and trained neural network, is applied to find out the 

inverse kinematic solution of the robot manipulators. Different types of configuration of 

the robot manipulators have been taken for the kinematic analysis. The results obtained 

out of all these models are presented in chapter 7. 
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Therefore, inverse kinematic solution of various configurations of the manipulators 

with and without Euler wrist are solved computationally using trained hybrid MLP 

neural network. The adopted method is compact and efficient tool for kinematic 

analysis. In the result chapter inverse kinematic solution for adopted manipulator has 

been tabularised and comparison on the basis of mathematical complexity is made over 

other conventional based method.  
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Chapter 6 

OPTIMIZATION APPROACH  FOR INVERSE 

KINEMATIC SOLUTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        

6.1 Overview 

Optimization is the method which yields best solution of a problem having number of 

variables and alternatives. From the definition, it includes the phenomenon or some 

biological concept in our daily life that inspires to minimize the energy, computational 

cost, mathematical operations, time, etc. and maximises efficiency, profits, power etc. 

with the help of some direct and indirect parameters. For example, computation of 

inverse kinematics problem of robot manipulator with the direct relation of considered 

torque, energy and time to be minimized to get the desired position. In this example 

joint variables can be calculated after optimization of the position error, torque, energy 

etc.  

Therefore in broad sense, the major constituents of the optimization methods can be 

recognize as its objective function which is generally a quantitative expression of the 

system to be optimized and then the number of unknown parameters or set of variables 

that is required proper setting to yield optimum value, finally the number of constraints 

which gives the complete objective function for the concern domain. These three 

constituents is the basis to solve any optimization problem and their objective function 

(fitness function) formulations. On the other hand, the major objectives for optimizing 

of any function would be the convergence of the solution. Furthermore, optimization 

algorithms should always be flexible to manage various problem such as nonlinear, NP-

hard, discrete, multi-objectives, multi-modals etc. Most important property of any 

optimization algorithms is to avoid the local optimum point. Considering an equality 

and inequality constraints problems, objective function can be defined, 
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Further these constraints )(Gn   and )(H l  can be handle by Lagrangian formulations 

by equation (6.1) as,  
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These above mentioned conditions for the optimality and complementarity is known as 

basic concept of the Kuhn-Tucker. Therefore the constraint optimization problem can 

easily handle with these concepts to make the objective function unconstraint. The 

optimal solution of the *  can be either minimum or maximum depends on the 

considered problem and the solution may be local, global optimum or near optimal. 

Further the optimization problem can also be categorized as the considered objective 

function may be linear or non-linear following algebraic, polynomials or transcendental 

etc. formulations. It can also be based on constraint with integer or mixed integer, and 

also the problem may be the numeric or symbolic. Therefore the optimization is 

depending on the real world problem which can be formulated by above considered 

cases.  
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In case of iterative optimization, initial approximation of the solution accelerates the 

process by consequently updating the current solution with the old solutions until it 

obtained the optimal point. The method is basically a manifold but it requires the 

attributes of objective function. On the other hand the conventional methods gradient 

based searching process is the key point to obtain the local optimum point, which 

means the objective function is differentiable and the gradient of the function can be 

evaluated, then optimal solution yields with descent direction search with each gradient 

point.  These methods are known as line search and some other conventional methods 

are steepest-descent, quasi-Newton, Newton, Non-linear conjugate methods etc. The 

major advantages of the above mentions methods are its local search ability, 

convergence of the solution for unconstrained problems, wherein accurate solution with 

the help of gradient based method is easy and computational cost is less. However, the 

fitness function (objective function) should be unimodal and can be differentiable for 

two steps. The problem with the method is non-smoothness and noisy solution of the 

objective function if it cannot be explain by algebraic or analytical formulations. On the 

other hand, zeroth order method does not require the higher derivatives and gradient 

based approximation. The interesting point in this method is the deficiency of the wide 

assumptions like continuity and differentiability of the function is not important. Few 

examples of the methods are direct search, particle swarm based optimization, bacteria 

foraging, evolutionary algorithms etc.  

The direct search methods are also known as heuristic based algorithms which contains 

the test and generation of the strategy. Wherein, every individual solution for the 

function is compared and evaluated so as to find the best solution with the constant 

observation of the improvement. There are two strategies for selection or sampling 

namely stochastic and deterministic. Stochastic search can be understand with the 

random search in the current dimension while in case of deterministic search a fixed or 

predefined coordinate of search for local best solution is known. Random walk is the 

examples for stochastic search process and pattern search, simplex method are 

deterministic methods for local optimization process. Due to its random variable 

dependencies its gives slow convergence while derivative based method performs 

faster. If the numbers of local optimum points are more than one then poor 

approximation which is combined with the greedy search could be stuck at sub-optimal 

point. Subsequently, initial approximation for the algorithms is less important if one 

considers the effective selection of the search space.  

Therefore, population based algorithms gives solution to the initial approximation 

problem with the help of selection of the objective function that acts as indirect local 

optimizers. Furthermore, it is also required to find the exact number of initial 
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approximations for the objective function so as to find global optimum. In this regard, 

evolutionary algorithms can be fruitful to adopt wherein it helps not only for the 

population generation of the candidate solution even use parallel local optimizers. On 

the other hand, exploration and exploitation abilities are also help to find the global 

points. The overview of this chapter is concerned with the brief introduction of the 

conventional and biological inspired algorithms, with the three major concepts of the 

optimization algorithms. The above introduced classical methods on the basis of the 

conceptual frame will be later used to explain the evolutionary algorithms, 

metaheuristic algorithms and swarm based algorithms etc. for the evaluation of the 

inverse kinematic problem of robot manipulators.  

6.2 Metaheuristic algorithms  

In the last few years, metaheuristic algorithms have been extensively used for resolving 

various complicated optimization problem. Nature is playing key role for developing 

many optimization algorithms for example artificial bee colony algorithm, firefly 

algorithm, ant colony optimization etc. We are always attracting by tiny or large 

organisms like diminutive invertebrate, charismatic vertebrates, birds, primates, bees, 

and ants etc. which are often the source of inspiration for many researchers [252]. These 

organisms provide the most delicate systems for exploring nature and answering 

fundamental scientific questions.  

Comparatively metaheuristic algorithms are more appropriate and dominant than the 

other analytical methods which are based on conventional mathematics and derivatives. 

Metaheuristic algorithms commonly have two elementary features like intensification 

and diversification. Intensification normally offers local search near to existing current 

best solutions whereas diversification offers efficient exploration of search space, 

mostly based on random numbers [253], [254].  Metaheuristic algorithms are widely 

used because they provide global solution keeping the aim of faster solution, solution of 

lengthy problems and obtaining robust techniques. Metaheuristic algorithms can find 

proximate optimum solutions at a sound computational cost which doesn‘t assure 

feasibility or optimality of the obtained solution, on the other hand in most of the cases 

researchers are keen to see the closeness to optimal and feasibility of the solution.  

[255]-[256].  

 The nature is infinite and there is no limit for the source of inspiration for example 

previously developed algorithms are inspired from ants, bees, fireflies, bacteria, music, 

habitats, frogs etc. There are many nature-inspired optimization algorithms have 

appeared for example the Genetic Algorithm (GA) [257], which mimics the genetic 

process of biological organism. The concept of GA came from the Darwin's principle 
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''survival of the fittest'', which describes the evolution of population on the basis of 

natural selection.   In this algorithm each individual represented by gene and the 

combination of gene creates chromosome which is ultimately yields solution. These 

chromosomes are recombining using crossover and mutation. This behaviour leads to 

global solution for the objective function [258]. In the process of evolution of natural 

things is mostly the source where selection process of the concern organisms in 

population keeping the best fitted to the environment is always adapted. This provides 

the most prominent optimization algorithms. As per Darwin theory, evolution mainly 

concern with the interaction of the physical mechanism of selection, reproduction, 

mutation, and competition with other species or organisms. In this theory, each 

individual are compulsorily need to compete the physical process for the survival, and 

this will lead to find the best or selection of survivals with better genetic character for 

the concerned environment so as to produce offspring or reproduction.   

Evolutionary algorithms EAs are metaheuristic algorithm based on the population of the 

individual solution that evolves by selection, mutation and reproduction of best fit in the 

population. The major advantage of these EAs algorithms compare to conventional 

method, conventional methods relies on the local memory of one point in each step of 

iteration which leads to local optimization process whereas population based 

metaheuristic methods uses parallel search mechanism with the major ability of 

exploration and exploitation. The major application fields of these algorithms are 

mostly in research and industries, mostly in robotics, machine deign, control 

application, image processing, modelling, signal processing etc. The basic pseudo code 

for evolution algorithms can be given as, 

 

 

 

 

 

 

 

 

 

In the above pseudo code considering the first example of minimization of )(F   

function optimization where initialization can be done within the feasible search space. 

Initial population can be selected randomly within the search space. Once initialized, 

population will go through the iteration and selection of each individual best solution 

until it converges for e.g. function threshold, no. of generations, etc. This each iteration 

mechanism gives information encoded in the current population so as to achieve new 

Evolutionary algorithm  

1. Initialization of population 

2. evaluation of each individual 

3. While termination criteria met do 

4. selection of parents 

5. recombination of parents 

6. mutation yields offspring 

7. evaluation of new individuals 

8. selection for next generation 

9. end while 
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trial generations, e.g. mutation and recombination. Selection process gives the solutions 

to replace the trial population within the current population so as to determine the next 

generation. The whole process of optimization of each individual solution within the 

current and trail population are assigned with the objective function value that signifies 

the closeness to minimum value. Moreover, this objective function evaluation helps the 

overall search process to find out which individual can be used for reproduction and 

even survive for the more generations.  

Therefore, convergence of the solution would be depending on exploration and 

exploitation ability of the search process within certain regions. In evolutionary 

algorithms, iterative process gives the ability to explore the new regions within the 

search space while selection is responsible for the exploitation of individual which 

would be carrying the information's to ensure the next generation to be completed. 

Finally, evolutionary algorithms can be categorized as, Genetic algorithms (GAs), 

Genetic programming (GP), Evolutionary Programming (EP) and Evolution strategies 

(ESs).  

The bio-logically inspired metaheuristic algorithms mimic the best feature of the nature 

which could turn into better efficiency as compared to other conventional algorithms. 

More often, these approaches are selecting the fittest value which has evolved by 

natural selection. Bio-inspired techniques may be categorized into: (a) Bacterial 

foraging algorithms (b) Evolutionary algorithms, (c) Swarm intelligence based 

algorithm [259]. Genetic algorithm is the key factor for the establishment of 

evolutionally algorithms because it satisfies the principle of "survival of fittest" given 

by Darwin. This classification covers genetic programming (GP), differential evolution 

(DE), evolutionary strategy (ES) and biogeography based optimization (BBO), but also 

other. These are also population based metaheuristic algorithms working with some 

form of the Darwin's principle [259].  

A swarm intelligence based algorithm anticipates specific operations, interactions and 

sharing information with other particles. These operations can be social and cognitive, 

due to their social behaviour and knowledge sharing habits turns into intelligence, 

which can be further known as swarm intelligence. Their cognitive and social behaviour 

yields global results [218].  

Another category of population based metaheuristic search algorithm is bacteria 

foraging algorithm. [260]-[261]. The most well-known types of the bacterial foraging 

algorithms are computing systems of microbial interactions and communications and 

rule-based bacterial modelling. Basic concept of these nature inspired population based 

algorithms are, dimension of the search space, number of individuals, basic related 

parameters, stopping criteria, number of evaluations etc. Each individual signifies a 
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resolution for the function optimization problem. In every generation a set of new 

solutions are obtained and then best solution are kept in memory to produce new set 

solution this process end when it reaches to certain termination criteria [262].  

Major drawback of these algorithms is the number of individuals which share 

information and this may cause hurdle to yield best or global solution. On the basis of 

inaccurate or insufficient information they may be converged in the local optimum 

point because the searching space or dimension of the problem may not discovered 

adequately. Moreover, similar individuals don‘t yields different solution that can also 

be drawback of the algorithm when the function having many local optimum points.  

6.2.1 Genetic algorithms (GAs) representation 

Genetic algorithm was first developed by J. Holland based on the artificial behaviour of 

natural system. GA's are encoded with the binary strings of 0's and 1's and it can be 

represented as genes of biological or natural systems. These genes are certain sequence 

of the chromosomes and determine the behavioural and physical characteristics of an 

organism in the environment. In the same way any evolutionary algorithms can be 

defined as two separate search spaces in which genes represents the variables to be 

optimized. Physical or behaviour parameter of the system can be represented by the 

solution space while the encoding with the genes gives the representation space. These 

physical parameters are known as phenotype and gene encoding is genotype of the 

system. Since genotype influence the individual solutions in the representation space 

while evaluation is accomplished in the solution space, therefore it is required to 

complete encoding and decoding of the variables from the solution to representation 

space. Moreover, the variables or parameters can also be represented as d-dimensional 

arrays, where each individual is either binary or real valued, that is d]1,0[  or 
d  respectively. 

 

Figure 6.1 Binary representations of genes 
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In genetic algorithm binary value is most often used for the representation of genes and 

the chromosomes, whereas in case of mutation based evolutionary programming and 

evolutionary strategies are real valued representation. Figure 6.1 represents a 

chromosome with n genes all are coded as six-bit binary words. Design variables and 

control parameters for both algorithms are encoded in single array. In case of 

evolutionary strategies each individual solution can be represented equation (6.3) as, 

),,(S        (6.3) 

where, n is the design vector, and  ,  are the evolution strategy parameters. 

Parameter   belongs to the vector space of standard deviation which modifies the 

amplitude during mutation of   and can be given as })n,2,1{n(
n

 
 . 

Similarly   is a set of rotation angles that gives the axes of orientation for the mutation 

in the search space topology and can be represented as 

})2/)1n)(nn2(,0{n(n    [……].  

Similarly, evolutionary programming each candidate is represented as design vector and 

vector of variance   and can be given equation (6.4) as as, 

),,,(),(S n1n1       (6.4) 

where, n  is real valued parameter and vn
 is real positive variance.  

(a) Initialization  

In most of the metaheuristic algorithms the decision for the initial approximation is play 

crucial role to reach the optimum point. Since the optimization process is absolutely 

based on the initial approximations therefore it is required to ensure the convenient 

procedure for random sampling of the initial approximations. Initialization gives the 

hint to build the candidate solutions by sampling of the feasible search space. In most of 

the cases, random number generation is used to sample the initial guessing so as to 

ensure the high diversity in the initial point. Instead, if prior information about the 

optimum point is available, then this information will be fruitful to use for the 

initialization process.  

In genetic algorithm, initialization process is done with the random sampling of the 

d times the binary value {0, 1}. In case of evolutionary strategies, initialization 

process is made through the mutation upon which a starting point is selected randomly 

or defined by user, and small standard deviation value is suggested. Finally, 

evolutionary programming uses the uniform random distribution for the initialization of 

design vector and variances.  
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(b) Recombination  

Recombination process can be understand with the mechanism of involving of two or 

more parents which may be sexual, asexual or panmictic to produce new offspring‘s. It 

can be represented as  qp SS:R   and this can be understand with the sexual or 

apomictic gene operator where  p2 . The above mechanism of recombination 

imitates the biological process to generate new individual solutions or offspring by 

sharing genetic information that are imprinted in all individuals of the parents.  

In genetic algorithm, this recombination process is generally based on the selection of 

chromosome in each individual randomly where p represents the no. of chromosome for 

selection and it can generate by the crossover probability ]1,0[pc  . This probability 

value is compared and measured with the simple random number r= [0, 1]. If the cpr   

then random crossover of chromosome in the bit string can be selected for the next 

generation of offspring.  After crossover of the selected bit other data will be swapped 

to create children chromosome with the replacement of the random crossover point. If 

cpr   then the parent chromosomes can be duplicated as shown in Figure 6.2.   

 

 

(a) First case cpr   

 

(b) Second case cpr   

Figure 6.2 Examples for simple crossover with two different cases. 

On the other hand, recombination in ESs can be sexual or panmictic for the generation 

of new offspring with considered random parents. Consequently, sexual recombination 

will be on the pair basis where p=2, for each new offspring's. In case of panmictic 

recombination one parent will be constant and another will be randomly selected from 

the parent population ( p ) for each individual offspring. Recombination can be 

intermediate or discrete, discrete recombination is random selection of the each 
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component of the offspring and intermediate calculates the arithmetic mean of the each 

component of the offspring.  

(c) Mutation 

Mutation can understand with the mechanism similar to the recombination process 

besides sexual or panmictic operators it works on asexual operator and can be 

represented as SS:M  . This gives the small random changes into the gene coding for 

each individual. Mutation operator basically works on the population multiplicity with 

the addition of small perturbations on the individuals with further ability of exploration 

of new regions within the search space. It also helps to overcome the problem of 

trapping in local minima.  

Genetic mutation is similar to recombination process apart from inverting the value of 

random bits of chromosomes. Correspondingly, one point crossover, mutation is 

generated by some activation of mutation probability ]1,0[pm  . This mutation 

probability will then be compared with the uniformly randomly generated number 

]1,0[r  such that if mpr   then bit will be inverted otherwise it will be unchanged 

(Figure 6.3).  

 

 

Figure 6.3 Mutation in genetic algorithm 

(d) Selection  

As we know that recombination and mutation gives the ability of exploration, whereas 

selection is mainly responsible for the exploiting the candidate solution with the 

advancement of the next generations. Since the selection exploits the favourable points 

in the search space, the fitness of each individual must be measured in the population. 

To accomplish the most promising area in the search space, it is required to define the 

objective or fitness function which confirms the closeness of the solution towards the 

optimal value. Let us assume the fitness function f to elaborate the selection procedure 

in genetic algorithm. Therefore the probability of selection can be given for each 

chromosome  ,1i,si , in the population equation (6.5) as, 
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Where,  represents the population size. The most common type of selection is roulette 

wheel selection procedure which is partitioned into  times and the size of the each 

partitioned is proportional to selection probability of each individual. New population 

can be generated by spinning the roulette wheel  times and in every spin random 

selection of the chromosome is done from the current generation (Figure 6.4). Therefore 

higher selection probability is leads towards the generation of new individuals in the 

population.  

 

 

Figure 6.4 Roulette wheel selections. The selection probability for all four 

chromosomes is 0.11, 0.20, 0.30 and 0.39. 

6.2.2 Particle swarm optimization 

Kennedy et al. [248], proposed an efficient evolutionary algorithm which is based on 

swarm intelligent which is known as Particle swarm optimization (PSO).  It is a 

population-based optimization algorithm imprinted from the simulation of social 

behaviour of bird flocking.  Here in this algorithm population comprises of the number 

of particles (candidate solution) which flies in search space to find the out global 

optimum point. Each individual flies in the search space with specific velocity and 

carrying position, simultaneously each individual update its own velocity and position 

based on the best experience of its own and the social population [248].The basic steps 

and mathematical modelling of Particle Swarm Optimization Algorithm has been 

discussed in previous chapter. In this chapter optimization algorithm will be used to 

evaluate the joint variables of various configuration of manipulator.  
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6.2.3 Grey wolf optimization algorithm 

In this algorithm leadership of grey wolves are arranged hierarchal namely alpha, beta, 

delta and omega with the main purpose of hunting, encircling of victim, looking for 

victim, attack on victim. These strategies give intelligent and social behaviour of the 

grey wolf for the arrangement of their food source with the minimum labour. The 

starting steps of this algorithm are (a) finding of food source (i.e. victim), (b) chasing 

the victim and (c) approaching the victim. Thereafter confirmation of victim or food 

source, grey wolves encircles and harasses the victim so as to not lose the food source 

which is later finished with the killing. Searching for the victim represents the 

exploration ability of the wolves for the development of the algorithm and exploitation 

can be understood with the hunting of victim. Therefore the main theme of the 

algorithm is to updating the searching agents of their positions and calculation of fitness 

for all agents [263].  

Different parameters of GWO are initialization of alpha, beta and delta, max iterations, 

searching agents, neighbourhood site selection and termination criteria. After 

initialization GWO follows certain steps such as, 

(1) Tracking, chasing and approaching the prey 

(2) pursuing the prey then enclosing and harassing the prey till it quite the 

movements  

(3) killing the prey 

Mathematical modelling of wolves behaviour can be given as the best fitness value will 

be considered as alpha, then second and last best can be named as beta and delta. Other 

individual solutions can be considered as omega. Now encircling of the grey wolves can 

be calculated as equation (6.6)-(6.7),  

)t(X)t(X.CD p


            (6.6) 

D.A)t(X)1t(X p


      (6.7) 

Where, t represents old iteration and t+1 is new iteration, pX


 is the position vector of 

victim, A


, C


 are the coefficient vector, X


 is the position vector of the grey wolf. Now 

the corresponding vectors can be calculated equation (6.8)-(6.9) as, 

ar*a2A 1


       (6.8) 

2r2C


       (6.9) 

where 1r


, 2r


 are random number vector of  [0, 1] and a


decreases linearly from 2 to 0 

through the complete iteration.  
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Now hunting behaviour of the grey wolves can be mathematically describes as, alpha 

wolf is the best individual together with the beta and delta which search for the 

potential location of the prey or this can be understand with the optimum location. 

Therefore keeping the positions of these wolves can be considered as best location and 

can keep in memory so as to update the old position with the comparison of memory. 

Therefore the concerned mathematical formulas can be given equations (6.10)-(6.12) 

as, 

XX*CD 1


  , XX*CD 2


  , XX*CD 3


                (6.10) 

  D*)AX(X 11


,   D*)AX(X 22


,   D*)AX(X 33


  (6.11) 

3

XXX
)1t(X 321


 

      (6.12) 

 

 

Figure 6.5 Flow chart for grey wolf optimizer 

I =1 

Yes No 

Stop 

Initialization of wolves' population

 
, a, A and C. 

 

Calculation of fitness for each 

individual  

Start 

Calculation of overall error of end effector position and orientation as 

a fitness function 

 

 

Update a, A and C  

Gen.>Max 

Gen. 

Update the position of each individual using 
 

 

I =I+1 

 

Calculation of fitness for all 

individual and 

 

 



     

  171 

 

Therefore, the positions of alpha, beta and delta can be calculated from the above 

formula and the final position will be given by random place within the radius of search 

diameter. Alpha, beta and delta behaves like leader to get the position of the victim and 

according to this other wolves update their position randomly around the victim. Flow 

chart of GWO is presented in Figure 6.5 for the corresponding fitness function of 

overall error minimization of the end effector position and orientation.  

Another efficient and famous metaheuristic algorithm based on population of bees is 

artificial bee colony (ABC) algorithm.  ABC is also population based optimization 

technique like PSO which resembles the intellectual performance of honey bee swarm. 

The honey bee society comprises of three groups namely employed, onlookers and 

scouts. Onlookers bees gives the hint for the food source which later discover through 

employed bees and then scout bees search for new sources. In this system, the location 

of food source signifies a potential solution of the concern problem and nectar amount 

of food source resembles to the fitness of the related solution [254].   

Teaching-Learning-Based Optimization (TLBO) is population based algorithm works 

on the effect of impact of a teacher on learners. In this algorithm population is 

considered as group of student where each student either learns from teacher called as 

teacher phase and they also gain some knowledge from other classmates or students that 

are learners phase.  Output will be in terms of results or grades. In these algorithms 

different subjects for learner resembles the variables and learner results is equivalent to 

the fitness function for any problem and finally the teacher will be considered as the 

best solution achieved so far. There are several other population based methods have 

been successfully implemented and shown efficiency [249]. However, it is not always 

necessary that every algorithm can solve complex problem and provides best solution in 

fact it was mathematically proved by Wolpert et al. [264].  

6.3 Development of novel metaheuristic optimization algorithm 

This section introduces a different nature inspired algorithm, called Crab Intelligence 

based optimization (CIBO), for optimizing various unimodal, multimodal, separable, 

non- separable problems and for inverse kinematics solution of robot manipulators. The 

CIBO algorithm is based on the swarm, crossing and shell selection behavior of the 

crabs. Each crab represents the individual or candidate solution of the problem and 

fitness evaluation can be done by shell selection behavior of the crab. When all crab 

occupies the shell then it can be understand with the convergence of the solution which 

is evaluated by position vector of each crab. The best position will be kept in memory 
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and shorted to best fit value for the next search. This process of searching stops when it 

reaches to maximum iterations.  

6.3.1 Crab intelligence based optimization algorithm 

Novel effectual nature-inspired metaheuristic optimization technique grounded on crab 

behavior is proposed in this paper. The proposed Crab Intelligence Based Optimization 

(CIBO) technique is a population centered iterative metaheuristic algorithm for D-

dimensional and NP-hard problems. The population of swarm represents the group of 

crabs which have social behavior as well as interact with their relatives and neighbors. 

Population of small group's moves over a D-dimensional search space collectively 

behaves like swarm. In this work positional vector of each individual which permits 

mutual movements of other individuals within the swarm is introduced. This algorithm 

considers three parts of crab behavior analysis: the first part is swarm behavior of crab, 

second part is related to crossing behavior and the third part is shell selection or 

recognition behavior of crabs. The mathematical modeling of the algorithm and the 

source of inspiration of the CIBO algorithm are explained in detail. In this work, the 

efficiency of the suggested algorithm with diverse individualities has been tested and 

then compared its performance with well-known  population based metaheuristic 

optimization algorithms. In the later section this algorithm has been applied for inverse 

kinematics solution for 5R robot manipulator.   

Most of the bio-inspired processes can be inferred in terms of computational cost. 

Social behavior indicates intelligence on crab which can be foundation for inspiration. 

Crabs have Intelligence for surviving the predators, looking for the right path for 

grabbing food and finally shelter for their safety.  

Various studies of crab's life which could be perfectly suitable to develop an 

optimization algorithm have been done. The different behavioral studies of crabs are: 

(a) Swarm behavior, (b) Foraging behavior, (c) Predator Protection, (d) Shell selection 

(Recognition behavior) and (e) Crossing behavior. Among above mentioned behaviors 

only three of them namely swarm behavior, shell selection and crossing behavior of 

crabs have considered in this paper. Predator protection and foraging behavior has not 

been considered in this research which could be part of future work. Few species of 

crabs (e.g. Mictyris guinotae) populate on flat lagoons and form massive groups of 

several hundreds and sometimes hundreds of thousands of crabs. It has been observed 

that crabs show searching and swarm behavior as per biological experiments [265].  A 

front group of their swarm is driven by inherent turbulence that causes each individual 

always changing their position in entire search area. This inherent turbulence helps to 

find out local search points.  Swarm behavior gives potential to cross water pools and 



     

  173 

 

avoidance area wherein a single individual or group of individuals never tries to cross 

avoidance area; however, a huge swarm enters the water and crosses a lagoon without 

reluctance. In the swarm crossing prevention or avoidance area consists of forward 

facing and submissive tail. Backward or submissive tail simply keeps an eye on forward 

group. It has been assumed in here that there are two types of neighborhoods first one is 

optimistic interactive and another for observing and succeeding flock-mates. It has been 

observed that the swarm or group of swarm can mingle with their relatives or even with 

non- relatives due to their diffusion mechanism. Mostly crabs spend their whole mature 

lives on land, but to reproduce they choose sea and into it they discharge their 

developing larvae. The main reason of swarm behavior is collectively defend against 

predators, or to come together to eat stamped food resources.  

The biological organisms interacted due to sharing or extracting relevant information 

from the environment.  Environment produces various physical or chemical signals 

which could be extracted by organism though their evolved sensory mechanisms [266]. 

Terrestrial and aquatic organisms have chemical, vision and tactile sensors and among 

these sensors chemical sensors play crucial role to extract ecological information. These 

chemical sensors produce signals for presence of predators, convenience of food 

resources, and status of companions and availability of shell [267]-[269].  

From the previous experiments it has been shown that chemical recognitions are the 

mediator for the behavioral study of crabs and other crustaceans. Most of the species 

gives attentions to adaptive behavior when exposed to odors to recognize the 

availability of shell [267]-[269].  It has also been observed that P. longicarpus spends 

more time investigation an empty shell. 

Many species of crabs are dependent on shell produced by gastropods for their 

protection. They generally does not interfere on living gastropods shell, rather they 

compete with each other for gastropods shells that die by other organism or other 

means. The most important behavior of crabs is they continually search for new shells 

due to their body growth and for getting higher quality of shell than their current shell. 

When they leave the current shell other crabs occupies vacated shell. For better 

understanding of shell selection behavior we have followed some previous research of 

vacancy chain [270] - [271]. Synchronous and asynchronous, these are two distinguish 

category of shell selection which differ in their behavioral and ecological cost and 

benefits as shown in Table 6.1, this study gives  social and alone search in straight 

divergence to shell relations comprising each individual for single shell selection. 

Synchronous vacancy chains arise when many crab stands in queue in front of shell. 

When bigger size crab occupies the vacant shell, others will wait as per their descendent 

order of their size. On the other hand, asynchronous vacancy chain will be occupied by 
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individual without making queue or any social interaction with others. In both cases, if 

shell quality is too low or damaged all individuals will discard the shell. 

Based on these evidences, our objective was learning from the mechanism that underlie 

for each individuals as chemical recognition behavior for the selection of appropriate 

shell. Later we observed that whether the crabs are able to classify two different shells 

or target on the bases of their size, rank and shell quality. This behavior yields better 

clue for developing the algorithm.  

 

Table 6.1 Shell selection 
 

Recently H. Murakami et al [272], conducted an experiment with Mictyris guinotae for 

the swarm behavior and invading avoidance area. Through numerous experiments and 

field study of these crabs, they examined following observations of swarming behavior:  

1) Moving swarm in the tideland has inherent turbulence and different velocities in 

each individual. 

2) If the swarm faces water pool or avoidance area they do not enter into the pool 

until and unless they have dense population. 

3) Each individual follows their predecessor. 

So these above stated observations like crossing behavior of the swarm has been 

adopted for the development of the algorithm.  

6.3.2 Methodology of CIBO algorithm 

Social behavior specifies intelligence on crab which can be origin for inspiration. Crab 

intelligence for avoiding dangerous water pool and finding their shelter for the 

protection are the main aim of the development of the algorithm. As we are now well 

familiar with the swarm behavior of the crab but there are many other behavior like 

Asynchronous Synchronous 

Low potential for finding an optimal 

shell 

Greater potential for finding an optimal shell 

Easily reversible shell switching Greater potential to get stranded in a sub-

optimal shell 

No risk of injury for predators Predator competition requires time and 

energy; creates risk of injury 

Decreased vulnerability to predators Large crab aggregations 
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foraging, predator protection, olfactory behavior etc. Besides their behavioral analysis 

some assumptions has been established which are as follows:  

1) Swarm may be moving on shore or inside water confirming that the size and 

initial distance between them satisfy the minimum distance criteria. 

2) It is important for swarm to cross water pool or avoidance area to get the shell.  

3) Every shore or tideland contains unknown number of shell.  

4) Shell acquisition may be synchronous or asynchronous depends on swarm.  

5) Shell design parameters like volume, weight and geometry etc. have not 

considered.  

6.3.3 Mathematical modeling  

This section describes the mathematical modelling of swarm and shell selection 

behavior of crabs. In this model swarm having N-individuals moving in D-dimensional 

space. Where max}N,.......4,3,2,1{N  . Boundary condition belongs to search space D. 

The location of i-th crab at the p-th step is given by equation (6.13),  
)x,x(L 21ip       (6.13)

 

Where }M......3,2,1{IiandDx,x 21   

Position vector for each i-th individual at p-th step )v,p,i(Pv
with }1V,......1,0{Vv   and

1)v,p,i(Pv  . If v=0, the position vector )0,p,i(Pv
, will be present position vector and can 

be exemplified by equation (6.14), 
)}sinR(),cosR{(z)0,p,i(P p,ip,iv 

   (6.14)
 

Where z is integer and R is the length of current position vector from origin. If 0v  the 

vector will be defined by random number α [0, 1] and angular random value δ [-4π, 4π] 

by equation (6.15) as,  

))}sin(R()),cos(R{(z)v,p,i(P p,ip,iv 
  (6.15)

 

Position vector of shell can be obtained by equation (6.16),  

)v,p,i(PLS v2p,i1pos 
    (6.16)

 

where ]1,0[, 21  , are positional constant. As we know that each crab interacting and 

sharing information for crossing and shell selection. Here we can define the suitability 

of shell on the basis of their size and distance.Suitability index for p-th position vector

)x,x( 21 , D)x,x( 21  would be given by equation (6.17) as,  
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)1V...2,1,0(Vvand

)M.....3,2,1(Iiwhere

)x,x(L)p,x,x(f 21ip21







    (6.17)

 

Now setting up memory for updating the position vector )x,x( 21 at the p-th position 

by equation (6.18) as,  

0)p,x,x(m 21       (6.18) 

 Updating the position of individuals may be synchronous and asynchronous will be 

based condition given below: 

Condition 1: 

Size of individuals 
size,iC of the i-th individual is based on random number γ [0, 1]. 

 
size,iC  

Condition 2: 

Minimum number of individual in a single swarm will always be more than 5.  

 
5C min,i   

Size of the i-th shell will be  
size,iS  

Condition 3: 

Minimum distance between crabs 
distmin_,iC is also based on random value µ [0, 1]. 

distmin_,iC  

Condition 4: 

If number of i-th individual will be more than the number of shell present on shore then 

the shell selection will be on the basis of muscular power of crab Mp. 
]1,0[Mp   

 The next position of shell for the i-th individual will be given by equation (6.19),  

j,pos1p,i SL       (6.19)
 

Where j satisfies the condition for )1V...2,1,0(Vv  by equation (6.20) as,  

)p,x,x(fL 211p,i      (6.20)
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Now the updated position will be given by equation (6.21),  

})x,x(L,D)x,x{(P new211p,i21new     (6.21)
 

Now we can set updated memory by equation (6.22),  

})x,x(L,D)x,x{(P)p,x,x(m new211p,i21new21  
  (6.22)

 

Now we can implement the end criteria for global point by equation (6.23),  

ii SC        (6.23) 

Where 
iC is number of individual and 

iS  is number of shell present, i= (1, 2….M). 

A. Hypotheses 

 This section first gives some basic and important definitions for validating the CIBO 

algorithms then in later we introduce the basic steps of algorithm.  

Hypothesis 1: 

A swarm z
distmin_,i

z
min,i CCS is a vector of z integers that signifies the feasibility of 

result and dependent upon random value generator.   

Hypothesis 2: 

Size of each individual size,iC and size of target or shell size,iS are two dependent 

parameters and represented by random value generator.   

Hypothesis 3: 

A position vector RSpos  of a swarm is a measure of the fitness of the solution. 

Where R is set of real number.  

Hypothesis 4: 

Proportionality of size,iC  and size,iS  represents the global searching ability.  

Hypothesis 5: 

Muscular power of all individual can be defined by the random number generator

]1,0[Mp  . 
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6.3.4 CIBO algorithm 

This section elaborates the basic phases of the proposed algorithm. As shown in Fig. 1 

there is N-number of swarm containing n-number of individuals that represents the 

search diameter and minimum distance in between them. Therefore, by generating huge 

search space, the swarm could cross the avoidance area and can reach to the suitable 

target. The shell is identified when swarm of crabs found local optimum. Identification 

of local optimum is based on minimum difference of past positions of crab.  

In nature crabs are fighting for the better shell and the best shell will be occupied by 

stronger one. Once they reached to the better shell they test it for suitability and if it not 

then starts searching for next point (switching from local search to global search). In 

this approach each crab is initialized with value of his size (best found solution shell); 

when crab finds shell they test it for better size. If fitness value of local optimum – size 

of shell is better than size of crab it will occupy.  The testing of shell and leaving it for 

smaller crabs is causing some delay where some crabs can escape the swarm. Because 

crabs cannot switch to global search alone they need minimum size of swarm. If enough 

crabs leave the shell and others are already testing for the size they can make global 

search, respectively migrate to other part of space and leave others behind.  

It has been observed through various researches for different organisms that they 

spontaneously invade from avoidance area with the inspiration of rich food sources 

[265]-[272]. This behavior demonstrates the power of their neural processing. Another 

important assumption has been made that is swarm needs to cross the water pool or 

avoidance area and after crossing, there will be chances of getting their shells. This 

mentioned assumption is helping to find out global optimum point on the entire search 

space.  

 

 

 

 

 

 

 

Figure 6.6 Representation of swarm and searching behaviour 
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These crabs have greater ability of recognition of better quality, size and emptiness of 

shell because of their chances of survival and protection from predation as explained 

earlier.  In Fig. 6.7 represented the basic steps of the algorithm.  

CIBO algorithm can be described briefly as: 

1) Initialization of CIBO parameters like swarm considering N-individuals moving 

in D-dimensional space, boundary condition belongs to search space D, the initial 

location of each individual, diameter of local search, initial distance between 

crabs and initial swarm size.  

2) Initialization of minimum number of individuals as per condition 2, compared 

with random value generations and random value for minimum distance and size 

of each individual as described in definition 1 if not then go to step 1. 

3) Recognition of empty shell near the search space if not go to 2. 

4)  Fitness evaluation of each individual for their current position vector as 

explained in definition 2 and evaluation of suitability of shell as per definition 4.  

5) Calculations of size of all individual. 

6) Shell selection: comparing the size of all individual with the suitability of shell if 

individual size is not less than shell size then go to step 2.   

7) Taking the shell if all individual satisfies the condition for selection of shell then 

the decision will be based on muscular power of each individual generated 

randomly as per condition 3. 

8) Updating the value of position vector of individual. 

9) If all individual occupies the shell then stop else go to step 2. 
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Figure 6.7 Flow chart for CIBO algorithm 
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6.4 Implementation for solving inverse kinematics 

Inverse kinematics of any robot manipulator can generally be defined as finding out the 

joint angles for specified Cartesian position as well as orientation of an end effector and 

opposite of this, determining position and orientation of an end effector for given joint 

variables is known as forward kinematics. Forward kinematic having unique solution 

but in case of inverse kinematics it does not provide any closed form solution thus it is 

require to have some suitable technique to solve inverse kinematics of robot 

manipulator. In this section adopted algorithmsare applied to find out the inverse 

kinematics of different configurations of robot manipulator. However, there are many 

optimization algorithms that can be fruitfully used to produce the desired results, but 

most of the population based algorithm does not have an ability to search for global 

optimum, and it gives slow convergence rate. On the other hand, developed 

optimization algorithm will be used to overcome the problem of Jacobian and other 

numerical based methods for inverse kinematic solution. Further mathematical 

modelling of objective function is discussed in detail to avail the inverse kinematic 

solution.  

6.4.1 Mathematical modelling of objective function  

Any Optimization algorithms which are capable of solving various multimodal 

functions can be implemented to find out the inverse kinematic solutions. In this section 

a general model of objective function is introduced for further implementation of 

optimization algorithm. In chapter 3, various configuration of robot manipulator has 

been considered for inverse kinematic solution. Now let's assume N-dof serial robot 

manipulator having  joint configuration. Therefore, position and orientation of the end 

effector can be gives by equation (6.24) as, 
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Where R represents the orientation of the end effector nSOR  and end effector 

position nP   these are relative to the fixed reference frame at the base of 

manipulator.  

Now the current position cP  of the end effector can be calculated from the equation (1), 

and for the given desired position dP , considering this problem to find out minimum one 

feasible joint variable which gives the position of end effector at the target position 

coordinate. On the other hand, it is quite difficult to find the closed form solution like 
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conventional inverse kinematic derivation therefore without loss of the generality 

optimization approach is necessary.  

Now optimization approach to solve inverse kinematic problem can be solve 

considering the error E between the current position and desired position of the end 

effector. This error is known as Euclidean distance norm and condition of optimization 

of objective function is when dc PP  . Therefore, for the specific pose P with 

corresponding joint variables *  with the major aim to minimize error E can be 

considered solution of inverse kinematic problem. 

Above discussed error E defines two different search areas for the optimization process; 

(1) pose coordinates of the end effector and (2) feasible joint variables in the 

configuration space. Therefore the first point can be known as representation space or 

exploration and second point defines the solution space for the metaheuristic 

algorithms. Now these spaces can be mapped together to form a function in such a way 

that feasible joint variables can be transform onto pose coordinates. Finally the 

transformation between the forward kinematics and inverse kinematics could be the 

function for the evaluation of inverse kinematic problem similar to conventional 

method. Forward kinematic of the manipulator will be useful for the generation of 

objective function in terms of current position with unknown joint variables. 

Further, previously defined error E will measure the difference between the current end 

effector pose with respect to the given goal. But to reach the desired position, will not 

only helpful for obtaining the joint variables. Hence,  the end effector coordinate with 

relating to position will be known as position error PE  and on the second side desired 

orientation of the end effector could be helpful to reach to the exact point is known as 

orientation error OE . Therefore, total error E will be the function of position error as 

well as orientation error is given by equation (6.25),  

OP EEE        (6.25) 

where   is constant weighting factor and can be defined as random number in between 

0 to 1, the individual errors are PE and OE . The weighting factor can also be 

set to zero that will yield the particular task requirements.  

Finally objective function formulation for the inverse kinematic solution can be given 

by equation (6.26) as, 
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       (6.26)
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}0)(h0)(g{q         

Where g and h represents the limit of the joint variables of robot manipulator. The 

constraint g and h gives the maximum and minimum value of the joint variables so as to 

obtain a specific workspace. Hence these constraints can be formulated as equation 

(6.27), 

lower)(g 
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where lower  and higher  represents the lower and higher limits of the joint variables.  
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The above general formulations of objective function for the solution of inverse 

kinematic problem provides direct solution with respect to joint variables. In this 

concept manipulator singularities are also avoided as compared to conventional 

methods and the objective function can easily be modified as per the task requirements.  

6.4.2 Position based error 

To optimize the joint angle of rotation of robot manipulator, one describes a fitness 

function that is composed of the difference between current position of and effector to 

the desired position that is known as positional function and second approach is to 

calculate joint angle error or orientation error. Manipulator accuracy can be measured 

by its ability to reach to the desired position within the workspace. Therefore, the 

distance between the current position and desired position should be zero so as to 

achieve higher accuracy. The difference between the desired positions to target position 

is kwon as position based error ( EP ) as shown in Figure6.8. To resolve the problem of 

inverse kinematic the position based error will be defined by the distance norm 

(Euclidean distance) as given in equation (6.28),  

cd
EP PPPE 

     (6.28)
 

where   represents the Euclidean distance norm function n .  

The norm function defines the specific scalar metric of vector space elements, and can 

be defined in many ways. Commonly used norm on n  is above defined Euclidean 

distance norm or 2l -norm and this norm can be given by euqtion (6.29), 
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The second important norm is Manhattan norm or 1l -norm , and can be defined as 

given in equation (6.30), 
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Figure 6.8 Position based error ( EP ) 

The 1l -norm is widely used for the robot pose estimation under various levels of noise 

contagion in the sensory output and proves to be more robust and accurate as compared 

to other norm. Similarly, 2l -norm is also used for the estimation of robot pose but it 

provides better convergence speed and mostly adopted for the inverse kinematic 

optimization. Therefore, in this work 2l -norm is adopted throughout the dissertation.  

6.4.3 Orientation based error 

Orientation of the end effector of robot manipulator can be represented by the most 

common Euler angles method. Orientation between two different orthogonal Cartesian 

coordinate system xyz and uvw is generally described by the rotation matrix R, which is 

parameterized by Euler angles α, β and γ. Nonetheless, orientation angles can be 

obtained from the Euler angles representation but they undergo the problem of 

singularities. Therefore, to avoid the problem of singularity it has to be replaced with 

the Quaternion vector method. Quaternion vector method has already been discussed in 

chapter 3 which gives stable and compact representation of the kinematics 

representation. Hence using the formulations of quaternion vector method, orientation 

error could be formulized.  
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Figure 6.9 Orientation angle between two frames  

Now the orientation error can be resolved using the current frame difference with the 

desired frame. Frame XYZ and UVW represents two different frames that are fixed at 

the same origin as shown in Figure6.9. Therefore, the current frame XYZ should rotate 

to align with frame UVW so as to formulate for the orientation error ER . Now the 

orientation error can be formulized on the basis of current frame rotation to desired 

frame. Orientation error can be given by equation (6.31) as, 
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Where dR rotation matrix of desired frame and cR  is the rotation matrix of current 

frame.  Rotation matrix ER defines the required rotation to obtain the end effect 

position to the desired coordinate within the workspace. It is required to find out the 

scalar function which can express the orientation of end effector error. As per Euler 

angles representation theorem, any orientation )n(SO  will be equivalent to a 

rotation of fixed axis nk   through an angle ]2,0[  . Therefore, to find out the 

equivalent axis representation quaternion vector method can be used. Now the 

quaternion expression can be given by equation (6.32) as, 
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where, 

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quaternion method. e  represents the angle of error and ek is rotation axis. e  

represents the absolute error angle between the dR  and cR . Therefore, Euler rotation 

matrix ER  can convert into the quaternion representation as given in equation (6.33), 
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where e
xn , 

e
yo  and e

za  are the elements of rotation matrix ER .  Therefore from equation 

(6.32) and (6.33) orientation error can be given as equation (6.34), 
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6.5  Solution scheme of inverse kinematics problem 

In this chapter, numerical optimization contexts based on metaheuristic algorithms are 

proposed to resolve inverse kinematic problem. Different configurations of the robot 

manipulator with several metaheuristic algorithms based solution is proposed in the 

next chapter. The major advantage of the implementation of optimization algorithms are 

compact and accurate solution of the inverse kinematic problem. Compared to the 

conventional methods like damped least square or Jacobian based methods it does not 

suffer singularity.   

Metaheuristic algorithms are generally population based methods which are capable of 

solving various multimodal functions. The fitness or objective function can be given by 

the total error of the manipulator pose. Each individual represents the joint variable with 

in the population. The optimum set of joint variables can be obtained by using 

optimization approaches. In case of inverse kinematics problem, multiple solutions exist 

for the single position of the end effector so it is required to find out the best set of joint 

angle in order to minimize whole movement of manipulator.  

As we know that objective function (pose error) is defined on the task space while the 

joint variables are the subset of configuration space of the manipulator. Therefore, 

objective function will be evaluated on the basis of forward kinematic mapping and 

total error obtained by the adopted method.  

6.6 Summary 

Inverse kinematics of any robot manipulator can generally be defined as finding out the 

joint angles for specified Cartesian position as well as orientation of an end effector and 

opposite of this, determining position and orientation of an end effector for given joint 

variables is known as forward kinematics. Forward kinematic having unique solution 

but in case of inverse kinematics it does not provide any closed form or unique solution 

thus it is require to have some suitable technique to resolve the problem for any 

configuration of  robot manipulator. Therefore optimization based algorithms are quite 

fruitful to solve inverse kinematic problem. Generally these approaches are more stable 

and often converge to global optimum point due to minimization problem. Moreover, 

selection of appropriate optimization technique leads to global optimum results. 
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This chapter provides the basics of metaheuristic optimization algorithms and different 

types of metaheuristic optimization algorithms are described. Novel effectual nature-

inspired metaheuristic optimization technique grounded on crab behaviour is proposed 

in this chapter. The proposed Crab Intelligence Based Optimization (CIBO) technique 

is a population cantered iterative metaheuristic algorithm for D-dimensional and NP-

hard problems. A general formulation of objective function for the inverse kinematic 

solution is derived and later is used for various configurations of the robot manipulator.  

In the derived objective function, optimization algorithms are used to minimize the end 

effector pose error for the given task. Besides using Jacobian matrix for the mapping of 

task space to the join variable space, forward kinematic equations are used. Kinematic 

singularity is avoided using these formulations as compared to other conventional 

Jacobian matrix based methods. Different types of configuration of the robot 

manipulators have been taken for the kinematic analysis.  

Therefore, inverse kinematic solution of various configurations of the manipulators 

with Euler wrist are solved computationally using several populations based 

metaheuristic algorithms. The adopted method is compact and efficient tool for 

kinematic analysis. In the result chapter inverse kinematic solution for adopted 

manipulator has been tabularised and comparison on the basis of mathematical 

complexity is made over other conventional based method.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



     

  188 

 

Chapter 7 

RESULTS AND DISCUSSIONS 

7.1 Overview 

The previous chapters have been essentially devoted to understanding the background 

of the research topic, various configurations of industrial robot manipulators for 

kinematic analysis, modelling of the inverse kinematic problem and solution techniques 

for selected robot manipulators. Although, the topic of inverse kinematic of robot 

manipulators is an intensively research topic, various new techniques are attempted by 

various researchers in order to make the solution method easier and/or faster depending 

upon the requirements. The method could be a single tool based or hybrid one. The 

requirements could be to simplify the solution method, obtain a precise result, or to 

make it suitable for the real time applications.  

Modelling of the inverse kinematic problem using derived mathematical tools has been 

done in chapter 4. These mathematical modelling of kinematics is used to generate 

input data set for the training of ANN models and hybrid ANN‘s. The training schemes 

of the adopted ANN models have been discussed in chapter 5. In chapter 6, different 

optimization algorithms and their application to solve inverse kinematic problem is 

discussed in details. The formulation of objective function for the solution of inverse 

kinematic problem based on positional as well as orientation based error has been 

discussed in detail. Therefore, current chapter is summarized under the following 

objectives.   

1. Inverse kinematic solution of the selected manipulators using conventional 

mathematical tools such as homogeneous transformation matrix and quaternion 

algebra is presented. 

2. Inverse kinematic solution using ANN models and obtained results are 

presented. 
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3. Results of some selected manipulators using ANFIS models are presented and 

comparisons have been made with hybrid ANN models. 

4. Results of inverse kinematic solution through adopted optimization algorithms 

and their comparative analysis is presented.  

To have an incorporated perspective of the research work done and do legitimate 

examination, all the outcomes have been gathered and are introduced in this chapter. 

7.2 Inverse kinematics solution using ANN  

Typically, industrial manipulators are designed to perform various tasks in spatial as 

well as in planar space. The end effector/tool of manipulator is programmed to follow a 

specific trajectory to execute the desired task within the workspace. The control over 

each joints and links of the manipulator is required to reach to the desired position 

along with the control of end effector for explicit orientation and position within 

prescribed limit. Therefore, kinematic relationship of the joints and links plays crucial 

role to obtained desired position and orientation of the end effector. In case of forward 

kinematic analysis, joint variables are known which helps end-effector to reach at 

desired location while inverse kinematic requires orientation as well as position of the 

object within the workspace. In chapter 3, DH-algorithms and homogeneous matrix 

based methods are used for the kinematic derivation for various configurations of 

manipulator. Inverse kinematic solution of 4-dof SCARA, 6-dof PUMA and 5-dof 

manipulators are described without use of Euler wrist using quaternion algebra. 

In this section ANN models like MLP, PPN, and Pi-Sigma NN are used to learn joint 

angles of robot manipulator and the data sets are generated through conventional 

methods like DH-algorithm, homogeneous transformation matrix, quaternion algebra 

method.  Forward kinematic equations from chapter 3 are used to train the neural 

network models whereas in this chapter both forward and inverse kinematics equations 

are used to trained the neural network models. ANN monitors the input-output 

relationship between Cartesian coordinate and joint variables based on the mapping of 

data. Inverse kinematics is a transformation of a world coordinate frame (X, Y, and Z) 

to a link coordinate frame (
n21 ,.....,   ). This transformation can be performed on 

input/output work that uses an unknown transfer function.   

In this section results are produced for the manipulators starting from 3-dof planar to 7-

dof anthropomorphic manipulator using conventional forward kinematic equations as 

well as ANN based models. In this chapter inverse kinematic solution for adopted 

manipulator has been tabularized and comparison on the basis of mathematical 

complexity is made over other conventional based method. MATLAB software is used 
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for the calculation of inverse kinematic solution of selected manipulators as presented 

in chapter 3. Further results of ANN presented in the following sections. 

7.2.1 Result for 3-dof planar revolute manipulator using ANN 

The proposed robot manipulator model is considered as 3-dof planar manipulator (see 

Figure 3.1). The length of the each links are 10a1  , 7a 2  and 5a3  . Let 1  is the 

angle between based and first link similarly 2  and 3  makes angle with second and 

third arm.  Considering all joint angles limits 0 to 180 degrees.   

Now using forward kinematic equation from chapter 4, training data for MLP, PPN and 

Pi-Sigma network has been obtained through MATLAB program. The generated 

sample data sets for of training adopted neural network models are given in Table 7.1.  

Table 7.1 Position of end effector and joint variables 

SN. X Y 1  2  3  

1 4.7023 9.4277 46.7776 152.3456 -139.1232 

2 3.7386 10.8467 47.8992 157.9094 -145.8087 

3 10.6173 0.2456 25.905 118.869 -84.774 

4 5.8569 2.6275 32.9457 121.5943 -94.54 

5 10.4862 6.0982 46.0634 148.5189 -134.5823 

6 10.2722 4.9191 41.5963 141.1135 -122.7098 

7 3.6785 4.4251 36.7329 124.6804 -101.4133 

8 0.888 0.8301 27.8623 103.661 -71.5232 

9 0.7141 9.8974 43.9037 140.343 -124.2467 

10 8.2878 5.2346 40.8674 138.7558 -119.6233 

Three different models have been taken for the validation of the results and the models 

are: MLP (Multi-layer perceptron), PPN (Polynomial perceptron network) and Pi-sigma 

network which are considered for the analysis of inverse kinematics problem, 

simulation studies are carried out by using MATLAB. A set of 1000 data sets were first 

generated as per the formula for this the input parameter X and Y coordinates. These 

data sets were basis for the training and evaluation or testing the ANN models. Out of 

the sets of 1000 data points, 900 were used as training data and 100 were used for 

testing for ANN models. 

Back-propagation algorithm was used for training the network and for updating the 

desired weights. In this work epoch based training method was applied. The 

comparisons of desired and predicted value of joint angles of MLP model for 100 

epochs have been represented in Figure 7.1 through 7.5. Where, Figure 7.1 represent the 

2-3-2-3 configuration of network in which (a), (b) and (c) depicts the predicted angles 

respectively. Another two different configurations have been taken for the testing of 

network shown in Figure 7.2 and Figure 7.3.   
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Figure 7.1 Comparison of desired and predicted value of joint angles for 2-3-2-3 

configuration using MLP model 

 

Figure 7.2 Comparison of desired and predicted value of joint angles for 2-4-4-3 

configuration using MLP model 

 

Figure 7.3 Comparison of desired and predicted value of joint angles for 2-5-5-3 

configuration using MLP model 
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To test the stability of the MLP two other models i.e. PPN and Pi-sigma network 

models have been studied. Figure 7.4 (a), (b) and (c) shows the mean square error of 

joint angles using PPN network which gives relative poor result as compared to MLP 

model and in case of Pi-sigma network the obtained result is also poor to compare with 

MLP as shown in Figure 7.5 (a), (b) and (c).  

 

 

Figure 7.4 Mean square error for joint angles using PPN model 

 

Figure 7.5 Mean square error for joint angles using Pi-sigma network model 

7.2.2 Results of 4-dof SCARA manipulator 

To validate the adopted MLP neural network, the proposed work is performed on the 

MATLAB Neural Networks Toolbox. The training data sets were generated by using 

forward kinematic equations from chapter 4. A set of 1000 data was first generated as 

per the formula for the input parameter X, Y and Z coordinates.  These data sets were 

the beginning for the training, evaluation and testing the adopted MLP neural network 
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model. Out of the sets of 1000 data, 900 were used as training data and 100 were used 

for testing for MLP as shown in Table 7.2. The following parameters were taken, 

Table 7.2 Configuration of MLPNN 

 

 

 

 

 

 

 

 

 

Table 7.3 Comparison between analytical solution and MLPNN solution 

Similar to previous work, back-propagation algorithm was used for training the network 

and for updating the desired weights.  The formulation of the MLPNN model is a 

generalized one and it can be used for the solution of forward and inverse kinematics 

Sl. Parameters Values taken 

1 Learning rate 0.99 

2 Momentum parameter 0.01 

3 Number of epochs 10000 

4 Number of hidden layers 2 

5 Number of inputs 3 

6 Number of output 4 

7 Target datasets 1000 

8 Testing datasets 900 

9 Training datasets 100 

S.N. 
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problem of manipulator of any configuration. However, a specific configuration has 

been considered in the present work only to illustrate the applicability of the method 

and the quality of the solution vis-à-vis other alternatives methods. Table 7.3 gives the 

data for position of joints determined through analytical solution and that obtained from 

MLPNN model.   

Table 7.4 Regression analysis 

This is consistent with our title that it is a good approach to train the ANN with a good 

representative set of fixed targets positions instead of variable target positions for the 

learning process that will introduce noise in the cost function and may result in poor 

convergence.  

The mean square curves, shown in Figure 7.6 through Figure 7.9 exhibit the proper 

description of the mean square error of trained network.  As shown in result, the used 

solution method the chance of selecting the output, which has the least error in the 

system. Hence, the solution can be obtained with less error as shown in Figures 7.6 

through 7.9 for the best validation performance of the obtained data with the desired 

data.  

 

Sl. 

Regression 

coefficient 

(r) 

Mean 

square 

error 

Epoch 

number 

Resolution through adept 

one robot with smart 

controller user‘s guide  

Resolution through 

MLPNN 

1 0.99824 0.0076 2632 0.00078
0 

0.000778
0 

2 0.99519 0.00471 10000 0.00312
0 

0.003104
0 

3 0.99972 0.00028 10000 0.0033mm 0.003299mm 

4 0.99928 0.00072 10000 0.047
0 

0.046966
0
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Figure 7.6 Mean square error for 1  

 

Figure 7.7 Mean square error for 2  
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Figure 7.8 Mean square error for 3d  

 

Figure 7.9 Mean square error for 4  
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Figure 7.10 Graphical view of regression 

Generalization tests were carried out with random target positions showing that the 

learned MLP generalize well over the whole space. From Table 7.3 it can understand 

that the mean square error for all joint variables is quite closer to zero.  The regression 

coefficient analysis as per Table 7.4 that shows 99.9%  matching for all joint variables 

which is acceptable for obtaining inverse kinematics of the SCARA manipulator. 

Resolutions of the AdeptOne SCARA robot given in Table 7.4 (obtained from 

AdeptOne robot with smart controller user‘s guide) are compared with the resolution 

obtained from the MLPNN model. Figure 7.10 represents the graphical view of 

regression analysis. 

7.2.3 ANFIS results of 4-dof SCARA manipulator 

The propose work is performed in MATLAB toolbox. The coordinates (X, Y and Z) 

and the angles (1, 2, d3 and 4) are used as training data to train ANFIS network with 

Gaussian membership function with hybrid learning algorithm. The training data for 

ANFIS model were taken from the Table 7.3 similar previous work. Table 7.5 shows 

configuration of ANFIS. Figure 7.11 through Figure 7.14 shows the validation curve for 

the problem of learning the inverse kinematics of the 4-DOF SCARA manipulator. 

Table 7.6 gives the average errors of joint variables using ANFIS and MLPNN. These 

(a) (b) 

(d) (c) 
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errors are small and the ANFIS algorithm is, therefore, acceptable for obtaining the 

inverse kinematics solution of the robotic manipulator. 

Table 7.5 Configuration of ANFIS 

Number of nodes 734 

Number of linear parameters 343 

Number of nonlinear parameters 63 

Total number of parameters 406 

Number of training data pairs 700 

Number of fuzzy rules 343 

Table 7.6 Comparison of results 

 

 

 

 

 

Figure 7.11 Mean square error for 1  

 

Figure 7.12 Mean square error for 2   

Sl. 

1 

MSE  of MLPNN 

0.0076 

MSE of ANFIS 

0.00030124 

2 0.00471 0.00002849 

3 0.00031 0.00026932 

4 0.00584 0.00039377 
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Figure 7.13 Mean square error for d3 

 

Figure 7.14 Mean square error for 4 

7.2.4 Results of 5-dof revolute manipulator  

Similar to SCARA manipulator proposed work is performed on the MATLAB Neural 

Networks Toolbox. ‗Premnmx‘ function is used for preprocessing of input and outpur 

data. Then, the function ‗newff‘ is used to create a feed forward network for inverse 

kinematics. Further, the same network is trained according to ‗tansig‘ and ‗logsig‘ 

transfer function. The training functions employed are ‗trainoss‘ and ‗trainlm‘, to 

validate the performance of MLPNN neural network for inverse kinematics problem. 

Then, the weights and biases are calculated for the network. To simulate the data 

corresponding to the task considered here, the new input data to the trained network are 

preprocessed with the ‗traimnmx‘ function. Then, the outputs simulated by the trained 

network are post processed back using the ‗postmnmx‘ function. The generated sample 

data sets for training adopted neural network models are given in Table 7.7.  
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Table 7.7 Desired joint variables determined through analytical solution  

These data sets are used for training, evaluation and validating the neural network 

model for inverse kinematic solution. Out of the sets of 1000 data points, 900 were used 

as training data and 100 were used for testing for MLPNN as shown in Table 7.8. The 

following parameters were taken: 

Table 7.8 Configuration of MLPNN 

Sl. Parameters Values taken 

1 Learning rate 0.59 

2 Momentum parameter 0.68 

3 Number of epochs 10000 

4 Number of hidden layers 2 

5 Number of inputs 3 

6 Number of output 5 

7 Target datasets 1000 

8 Testing datasets 900 

9 Training datasets 100 

Back-propagation algorithm was used for training the network and for updating the 

desired weights. The mean square curve shown in Figure 7.15 through Figure 7.19 in 

result, the used solution method gives the chance of selecting the output, which has the 

least error in the system. So, the solution can be obtained with less error. Figure 7.15 

through Figure 7.19 shows the validation curve for the problem of learning the inverse 

kinematics of the 5-DOF manipulator.  These errors are small and the MLPNN 

algorithm is, therefore, acceptable for obtaining the inverse kinematics solution of the 

robotic manipulator. Figure 7.20 shows the graphical view of regression with respect to 

number of epochs and it‘s almost gives 99.99%. In the next section, the comparison of 

MLPNN model with ANFIS has been presented.  

 

SN 
Positions and joint variables determined through quaternion algebra 

θ1 θ 2 θ 3 θ 4 θ 5 X Y Z 

1 112.5641 47.3165 8.2447 65.8373 39.8977 -186.6903 183.0670 -14.7039 

2 153.1316 21.9812 126.9031 57.2629 30.4168 -92.6981 32.1423 157.3316 

3 66.1779 143.2985 14.6124 73.6231 41.5228 -131.5420 -22.3866 -32.2155 

4 57.6085 119.6396 104.5818 71.1946 33.8225 -10.7684 111.7435 77.4862 

5 31.4308 2.9242 71.5757 63.0358 39.8749 64.7966 172.0372 151.5714 

6 124.3702 116.7337 102.4999 53.1482 22.4807 -111.8590 -59.6708 60.8590 

7 89.1765 13.1827 101.6747 80.3340 29.4704 -76.9533 96.2813 121.3505 

8 5.6698 30.9685 57.2308 29.3079 29.6421 174.3873 107.6283 143.1839 

9 131.5857 108.7086 92.8278 5.6664 36.4826 -104.6410 109.7511 40.5523 

10 32.8579 102.3539 138.8770 26.4141 33.7466 146.4984 48.7416 54.4041 

11 134.1878 70.4224 26.3511 82.2471 44.0566 -188.7864 15.4108 -53.9823 
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Figure 7.15 Mean square error for  1 

 

Figure 7.16 Mean square error for  2 

 

Figure 7.17 Mean square error for  3 
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Figure 7.18 Mean square error for  4 

 

Figure 7.19 Mean square error for  5 

 

 

 

 

 

 

 

 

 

Figure 7.20 Regression coefficient plot for joint variables 

(b) (a) (c) 

(d) (e) 
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7.2.5 ANFIS results of 5-dof revolute manipulator  

In this section MLPNN result of 5-dof manipulator has been compared with the ANFIS 

results of inverse kinematic problem. Generated data sets for MLPNN training is used 

to training ANFIS network. Similar to previous work, the coordinates (X, Y and Z) and 

the angles (1, 2, 3, 4, and 5) are used as training data to train ANFIS network with 

Gaussian membership function with hybrid learning algorithm.  A set of 1000 data sets 

were first generated as per the formula for the input parameter X, Y and Z coordinates.  

Out of the sets of 1000 data points, 700 were used as training data and 300 were used 

for testing the performance of ANFIS.In the training phase, the membership functions 

and the weights will be adjusted such that the required minimum error is satisfied or if 

the number of epochs reached. At the end of training, the trained ANFIS network would 

have learned the input/output map and it is tested with the deduced inverse kinematics. 

Figure 7.21 through Figure 7.25 shows the difference in joint variables analytically and 

the data predicted with ANFIS. 

Table 7.9 Configuration of ANFIS 

 

 

 

 

 

 

Table 7.10 Comparison of results 

 

 

 

 

 

 

 

 

 

 

Table 7.9 shows configuration of ANFIS. Figure 7.21 through Figure 7.25 shows the 

validation curve for the problem of learning the inverse kinematics of the 5-DOF 

manipulator. Table 7.10 shows comparison between the MLPNN with respect to 

ANFIS. Generalization tests were carried out with new random target positions showing 

that the learned MLPNN gives a deviation of 0.29599 of the error goal during the 

learning process and ANFIS gives 0.004448 average errors which is better than the 

Number of nodes 734 

Number of linear parameters 343 

Number of nonlinear parameters 63 

Total number of parameters 406 

Number of training data pairs 700 

Number of checking data pairs 0 

Number of fuzzy rules 343 

Sl. 

Average 

testing Error 

of MLPNN 

Epoch 

Number 

MLPNN 

Average testing Error of 

ANFIS 

Epoch Number 

ANFIS 

1 0.112475 10000 0.0035263 10
 

2 0.451253 10000 0.0029383 10
 

3 0.336321 10000 0.013536 10 

4 0.258163 10000 0.0016652 10 

5 0.321749 100000 0.00057395 10 
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mean square error of MLPNN. The obtained errors are small and the ANFIS algorithm 

is, therefore, acceptable for obtaining the inverse kinematics solution of the robotic 

manipulator. 

 

 

Figure 7.21 Mean square error for 1 

 

Figure 7.22 Mean square error for 2 
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Figure 7.23 Mean square error for 3 

 

Figure 7.24 Mean square error for 4 
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Figure 7.25 Mean square error for 5 

7.3 Hybrid ANN approach for inverse kinematics solution 

In this section metaheuristic algorithm like CIBO, PSO, GA, GWO, TLBO etc. are 

applied using weight and bias based optimization criteria and MLP neural network is 

used throughout this section. From the previous section neural network models are 

appropriate for solving inverse kinematic problem but the adopted models producing 

inappropriate mean square error for the different configurations of the robot 

manipulator. Therefore, hybridization of metaheuristic or population based algorithms 

method can be start with the introduction of the adopted algorithms with the specific 

model of neural network. The detailed discussions of inverse kinematic problem have 

been presented in chapter 4.  

Hybrid ANN model are used for solving the inverse kinematic problem in the present 

work.  Chapter 5 gives the detail discussion of hybridization scheme of MLP network 

with metaheuristic algorithms.  The results obtained by solving the inverse kinematic 

problem for different configurations of 6-dof manipulator using hybrid ANN in 

MATLAB platform is presented in following sections. 

7.3.1 Inverse kinematic solution of 4-dof SCARA manipulator  

In this section, 4-dof SCARA manipulator is selected for the inverse kinematic 

analyses. SCARA robot manipulators are mostly used in light duty applications due to 

the high speed and precision of the manipulator. The detail kinematic modelling of this 
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manipulator using conventional method is presented in chapter 4. Using forward 

kinematic equations from section 4.2.5 is used to create data sets for the training of 

MLPNN model. The results using back propagation algorithms with 2 hidden nodes for 

MLPNN is obtained in section 7.2.2. The present section gives the comparative analysis 

of inverse kinematic solution with the hybrid MLPNN technique. From section 7.2.2 

the training of MLPNN model MATLAB neural network toolbox is used and later the 

obtained results are compared with the hybrid MLPNN method. A set of 1000 data sets 

are first generated as per the formula for the inputs X, Y and Z coordinate. The 

parameters for training MLP network is presented in section 7.4.2 (see Table 7.2).  

Table 7.11 Mean square error for all training samples of hybrid MLPNN 

In this section, different numbers of hidden nodes are used and numbers of hybrid 

algorithms such as MLPPSO, MLPGA, and MLPTLBO MLPCIBO etc. have been 

compared with the MLPBP algorithm. Hybrid scheme has been presented in section 

5.2, using the scheme of hybridization training of MLNN model is presented. The 

weight and bias of MLPNN model is optimized with the selected optimization 

algorithms. The parameters of the optimization algorithms have been chosen randomly. 

After the optimized training of the MLPNN model, the trained network is used to 

calculate the inverse kinematic of the SCARA manipulator. After calculation of the 

inverse kinematic solution the mean square error is obtained with the comparison of 

actual solution and desired solutions. Best mean square errors for all joint variables are 

Output Algorithms 
Number of Hidden Nodes 

4 5 8 11 14 17 20 23 27 30 

1  

MLPBP 9.89e-3 2.52e-2 4.88e-1 9.67e-3 6.26e-1 1.69e-3 2.54e-1 0.51e-3 6.55e-2 8.29e-3 

MLPPSO 1.40e-6 2.08e-6 1.63e-8 0.54e-11 1.82e-16 7.90e-17 4.15e-15 5.70e-15 1.11e-19 4.16e-21 

MLPGA 1.05e-21 2.55e-23 9.09e-25 6.85e-21 5.21e-21 3.25e-29 7.89e-19 5.45e-18 6.58e-21 2.09e-21 

MLPTLBO 1.37e-07 1.00e-08 4.19e-11 6.58e-10 8.87e-09 3.96e-08 9.39e-11 6.56e-10 2.11e-13 5.61e-11 

MLPCIBO 1.65e-05 5.19e-07 1.85e-09 9.21e-11 2.22e-10 0.52e-09 8.47e-11 1.01e-13 7.67e-09 0.28e-11 

2  

MLPBP 1.23e-01 0.41e-02 4.96e-03 5.14e-01 6.85e-02 0.57e-03 4.26e-03 2.25e-02 6.94e-01 8.32e-03 

MLPPSO 0.09e-05 1.64e-09 2.73e-09 0.17e-11 0.34e-07 1.03e-12 2.24e-11 7.54e-12 8.16e-13 1.92e-11 

MLPGA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

MLPTLBO 0.00 0.00 3.42e-39 6.44e-41 4.51e-33 5.48e-48 6.00e-39 7.88e-31 6.50e-32 0.89e-29 

MLPCIBO 5.61e-11 2.32e-15 7.76e-11 8.28e-15 0.91e-16 4.86e-21 1.63e-14 4.73e-17 5.87e-16 9.39e-14 

3d  

MLPBP 6.87e-01 2.53e-04 4.54e-02 7.62e-02 5.27e-01 3.42e-04 5.77e-03 2.57e-02 0.41e-03 8.01e-02 

MLPPSO 7.74e-05 5.55e-07 3.26e-10 4.72e-11 0.23e-09 9.28e-11 7.03e-12 4.67e-13 8.52e-14 3.77e-16 

MLPGA 0.00 0.00 0.00 8.27e−49 9.15e−51 7.92e−49 7.00e−49 2.59e−39 3.71e−37 4.74e−29 

MLPTLBO 4.86e−11 8.47e−12 2.19e−13 8.67e−13 2.22e-11 9.99e-21 7.80e−19 7.86e−19 4.16e−15 7.66e−16 

MLPCIBO 1.52e-10 2.80e-09 7.14e-11 8.88e-11 0.46e-09 1.88e-13 2.22e-16 3.64e-11 5.96e-12 3.43e-11 

4  

MLPBP 8.93e-02 4.26e-01 2.45e-02 1.99e-04 7.61e-01 5.67e-02 0.76e-04 5.07e-03 4.37e-02 8.12e-01 

MLPPSO 2.27e-05 2.78e-07 4.11e-08 3.27e-09 9.07e-11 4.83e-16 6.49e-14 4.44e-11 6.43e-19 9.73e-11 

MLPGA 6.74e-11 2.09e-29 3.77e-41 4.00e-31 0.00 0.00 0.00 0.00 0.00 0.00 

MLPTLBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

MLPCIBO 8.47e-12 4.75e-11 2.26e-14 6.03e-13 8.67e-21 7.58e-19 5.59e-15 6.66e-15 8.64e-26 0.04e-21 
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presented in Figure 7.26. Mean square error for all joint variables and comparison of 

different algorithms are presented in Table 7.11.  

 

 

(a) Best mean square for  1  

 

(b) Best mean square for  2  

 

(c)  Best mean square for  3d  
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(d)  Best mean square for  4  

Figure 7.26 (a), (b), (c), (d) and (e) are mean square error curve for all joint angles 

using MLPGA. 

7.3.2 Inverse kinematic solution of 5-dof manipulator  

In this section, 5-dof revolute manipulator is considered for the kinematic inversion. 

This manipulator is extensively used in industries as well as in research work. The 

inverse kinematic solution for the adopted manipulator is performed on the MATLAB 

R2013a. From the previous research work the adopted MLPNN models perform poor. 

Therefore, performance of hybrid ANN model and evaluations have been made.  For 

the training of MLP network, MATLAB Neural Networks Toolbox is used (see section 

7.2.4). ‗Premnmx‘ function is used for preprocessing of input and output data. Then, the 

function ‗newff‘ is used to create a feed forward network for inverse kinematics. 

Further, the same network is trained according to ‗tansig‘ and ‗logsig‘ transfer function. 

The training functions employed are ‗trainoss‘ and ‗trainlm‘, to validate the 

performance of MLP neural network for inverse kinematics problem. Then, the weights 

and biases are calculated for the network.  

To simulate the data corresponding to the task considered here, the new input data to 

the trained network are preprocessed with the ‗traimnmx‘ function. Then, the outputs 

simulated by the trained network are post processed back using the ‗postmnmx‘ 

function.  The training data sets were generated by using forward kinematic equation 

from chapter 4.  A set of 1000 data sets are first generated as per the formula for the 

inputs X, Y and Z coordinate.  The generated data sets are used to train the MLP 

network.  The parameters for training MLP network is given in Table 7.8.  

The abilities of several different hybrid algorithms such as MLPPSO, MLPGA, 

MLPTLBO and MLPCIBO have been compared. In the training phase, the weights and 

biases will be adjusted such that the required minimum error is satisfied or if the 
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number of iteration reached. At the end of training, the trained MLP network would 

have learned the input/output map, and it is tested with the deduced inverse kinematics. 

The results obtained through the MLPBP have been described in section 7.2.4. There is 

no specific tuning of the associated parameters are considered. The parameters for the 

PSO algorithm is discussed further and for the rest of the algorithm parameters are 

selected randomly without any tuning. 

 The initial approximations of every particle have been chosen randomly in the range of 

[0, 1]. For MLPPSO, maximum and minimum inertia weights are decreasing linearly 

from 0.9 to 0.4. C1 and C2 are set to 2; r1 and r2 are two random numbers in the 

interval of [0, 1] and the initial velocities of particles are randomly selected in the 

interval of [0, 1]. Finally the population sizes for each algorithm are 100. From section 

7.2.4, Table 7.9 gives some of the desired data for the position of joints determined 

through analytical solution, which will further be used to calculate the MSE of MLPBP, 

MLPPSO, MLPGA, MLPTLBO and MLPCIBO.  

Table 7.12 Mean square error for all training samples of hybrid MLPNN 

Output Algorithms 
Number of Hidden Nodes 

4 5 8 11 14 17 20 23 27 30 

1  

MLPBP 1.25e-2 2.63e-3 9.10e-2 7.76e-2 3.62e-1 2.96e-1 4.45e-2 1.15e-1 7.15e-1 9.92e-1 

MLPPSO 2.04e-9 4.80e-9 2.36e-9 1.45e-8 2.28e-9 8.09e-12 5.51e-12 6.07e-14 2.07e-25 5.61e-25 

MLPGA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

MLPTLBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

MLPCIBO 2.56e-52 6.91e-51 0.00 0.00 3.33e-49 1.25e-53 0.00 0.00 0.00 1.82e-50 

2  

MLPBP 2.32e-3 1.14e-2 5.69e-2 6.56e-3 7.58e-1 7.75e-3 5.62e-1 3.96e-1 7.89e-2 9.23e-1 

MLPPSO 1.90e-6 2.46e-12 3.37e-9 1.71e-20 1.43e-8 2.30e-13 3.42e-15 8.45e-15 9.09e-17 2.29e-12 

MLPGA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

MLPTLBO 9.33e-19 2.64e-20 4.52e-18 1.66e-19 5.31e-18 6.84e-17 4.95e-19 8.61e-17 8.44e-19 1.09e-21 

MLPCIBO 4.16e-16 1.21e-17 6.65e-19 7.17e-18 9.89e-17 3.75e-25 2.52e-15 5.62e-19 4.14e-19 3.52e-24 

3  

MLPBP 5.56e-2 3.35e-3 1.69e-3 8.26e-1 6.45e-2 4.24e-2 6.44e-1 3.85e-3 1.14e-1 9.10e-1 

MLPPSO 8.42e-7 1.68e-6 4.62e-12 5.27e-12 1.32e-9 1.68e-10 1.30e-11 1.41e-14 1.25e-15 2.87e-21 

MLPGA 6.12e−15 9.47e−16 7.24e−13 3.19e−13 5.51e−13 6.29e−13 6.11e−17 3.47e−19 3.17e−16 3.47e−19 

MLPTLBO 3.68e−16 9.84e−17 3.21e−33 9.76e−33 0.00 0.00 6.08e−30 1.86e−33 0.61e−16 8.88e−17 

MLPCIBO 2.63e-17 3.61e-16 8.25e-21 9.99e-19 1.11e-53 0.96e-49 1.01e-21 8.88e-21 6.96e-21 4.54e-25 

4  

MLPBP 9.39e-03 5.62e-03 3.34e-03 2.45e-02 8.75e-02 6.78e-03 1.65e-01 4.96e-02 5.48e-01 2.23e-02 

MLPPSO 2.38e-07 1.15e-08 5.38e-09 2.16e-10 1.09e-08 3.72e-09 1.34e-11 5.67e-12 1.32e-20 1.37e-13 

MLPGA 3.62e-35 0.00 0.00 0.00 9.09e-47 0.07e-44 3.71e-36 0.00 0.00 3.36e-49 

MLPTLBO 0.00 0.00 0.00 0.00 
9.85e-

105 

3.32e-

111 
6.45e-79 3.25e-78 1.12e-80 0.00 

MLPCIBO 0.00 0.00 1.62e-45 7.12e-49 9.58e-41 8.47e-25 6.48e-54 5.49e-59 9.78e-25 0.00 

5  

MLPBP 1.85e-3 2.23e-3 4.45e-2 1.24e-1 6.34e-1 7.54e-2 4.21e-3 6.54e-2 4.26e-1 8.87e-1 

MLPPSO 2.42e-10 6.22e-11 5.84e-9 6.82e-16 4.76e-9 1.18e-9 2.34e-17 2.44e-14 9.10e-12 1.54e-11 

MLPGA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

MLPTLBO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

MLPCIBO 6.89e-45 4.21e-71 3.85e-81 0.00 0.00 0.00 6.55e-79 4.66e-53 0.00 0.00 
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The MSE for MLPBP algorithm shown in Figure 7.15 through Figure 7.19 in result 

section 7.2.4, the used solution method provides the criteria for selection of the output if 

it produces less error.  So, the solution can be obtained with less error. Table 7.12 gives 

the experimental results and comparison of all adopted algorithms for different hidden 

nodes. Best results for joint variables specified in bold letters and presented in Figure 

7.27 through Figure 7.29. Figure 7.27 (a), (b), (c), (d) and (e) shows the selected best 

mean square curve of MLPGA for all joint variables. Similarly best chosen mean square 

curve of MLPTLBO from Table 7.12 depicted in Figure7.28 (a), (b), (c), (d) and (e) for 

all joint variables.  

From Table 7.12, MLPBP does not give better results than the other adopted 

algorithms, due to trapping in local minima. Also it has been observed that MLPBP has 

been slow searching ability, and it consumes more CPU time. MLPGA gives the best 

results for all joint variables of the robot manipulator. MLPTLBO is a more stable 

algorithm as compared to MLPGA. Although results obtained through MLPTLBO is 

less as compared to MLPGA but due to better stability, MLPTLBO does not consume 

much CPU time as compared to MLPGA. It has been also observed that the MLPCIBO 

having slow searching process over MLPTLBO and MLPGA. However, CIBO has the 

strong exploration ability among all heuristic algorithms. For training MLP network it 

has been observed that both adopted heuristic algorithm yield good results of all joint 

variables. In other words, the proper utilization of an evolutionary algorithm with MLP 

networks gives outstanding performance for training the network. So these adopted 

hybrid techniques can be used for NP-hard problem, which generally suffers from 

trapping in local minima. Also these techniques guarantee faster convergence rate. 

 

 

(a) Best mean square for  1  
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(b) Best mean square for  2  

 

 

(c)  Best mean square for  3  

 

(d)  Best mean square for  4  
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(e)  Best mean square for  5  

Figure 7.27 (a), (b), (c), (d) and (e) are mean square error curve for all joint angles 

using MLPGA. 

 

(a) Best mean square error for  1  

 

(b) Best mean square error for 2  
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(c) Best mean square error for 3  

 

(d) Best mean square error for 4  

 

(e) Best mean square error for 5  

Figure 7.28 (a), (b), (c), (d) and (e) are mean square error curve for all joint angles 

using MLPTLBO. 
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(a) Best mean square error for  1  

 

(b) Best mean square error for 2  

 

(c) Best mean square error for 3  
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(d) Best mean square error for 4  

 

(e) Best mean square error for 5  

Figure 7.29 (a), (b), (c), (d) and (e) are mean square error curve for all joint angles 

using MLPCIBO. 

7.3.3 Inverse kinematic solution of 6-dof PUMA manipulator  

In this section, PUMA 560 robot manipulator is selected for the inverse kinematic 

inversion. This manipulator is one of the benchmark industrial manipulator which is 

widely used in industries and research work. The detail descriptions about this 

manipulator have been presented in chapter 3. The forward and inverse kinematic 

derivation using quaternion algebra is already discussed in chapter 4. Using the forward 

kinematic equations the data sets for the training of MLNN neural network is generated. 

MATLAB program is used to generate the data sets of the end effector coordinates and 

joint variables. These data sets were the basis for the training, evaluation and testing the 

MLP model.  
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Similar to previous work hybrid ANN method is used to resolve the problem of inverse 

kinematics of 6-dof PUMA manipulator. The comparison has been made with the 

several hybrid models like MLPPSO, MLPGA, MLPTLBO and MLPCIBO. Initial 

approximations for all adopted optimization algorithms are similar to the case of 5-dof 

manipulator. The desired joint variables are taken as input for the training of hybrid 

ANN model. The configuration and parameters is given in Table 7.13. Quaternion 

vector method is used to calculate the inverse kinematic solution for the PUMA 

manipulator and sample data sets are given in Table 7.14.  

Table 7.13 Configuration of MLPNN 

 

 

 

 

 

 

 

Table 7.14 Desired joint variables determined through quaternion algebra  

Similar to the results of previous research work MLPBP does not produce better results 

as compared to other hybrid algorithms. On the other hand, MLPGA gives best results 

among all other hybrid algorithms. But the convergence rate of MLPTLBO is more 

stable than GA. It has been observed that MLPGA is giving fast searching ability in 

case of 6-dof PUMA manipulator over other adopted algorithms. However, TLBO 

show strong exploration capability than others. Hybridization of metaheuristic 

Sl. Parameters Values taken 

1 Learning rate 0.18 

2 Momentum parameter 0.52 

3 Number of hidden layers 1 

4 Number of inputs 3 

5 Number of output 6 

6 Target datasets  1000 

7 Testing datasets 300 

8 Training datasets 700 

SN 
 Joints variables and positions determined through quaternion algebra 

θ1 θ 2 θ 3 θ 4 θ 5 θ 6 X Y Z 

1 26.912 131.557 79.577 138.870 6.78 63.56 -176.663 133.670 -104.739 

2 13.295 32.899 102.499 26.351 91.75 21.52 -91.681 62.123 147.316 

3 19.696 134.188 101.677 138.870 54.53 78.32 -121.520 -32.366 -132.255 

4 12.942 109.606 57.238 26.351 95.24 69.58 -110.784 101.765 72.482 

5 106.737 28.244 71.577 33.825 39.879 40.12 164.766 132.072 131.574 

6 113.187 196.921 29.309 39.879 22.487 12.63 -11.850 -55.608 68.850 

7 39.965 114.694 5.664 22.487 20.323 9.89 -176.933 97.283 111.305 

8 61.912 93.065 26.411 33.825 6.35 45.45 134.373 167.623 133.139 

9 121.557 96.636 82.241 39.879 62.56 54.78 -114.640 139.711 45.543 

10 38.879 6.922 33.746 138.870 34.63 96.85 136.494 38.746 58.441 

11 104.178 106.737 44.056 26.351 41.32 21.23 -158.764 45.408 -51.653 
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algorithms gives better performance as compared to back propagation algorithm. In 

other words, the proper utilization of an evolutionary algorithm with MLP networks 

gives outstanding performance for training the network. So these adopted hybrid 

techniques can be used for NP-hard problem, which generally suffers from trapping in 

local minima. Also these techniques guarantee faster convergence rate. 

Table 7.15 Mean square error for all training samples of hybrid MLPNN 

Output Algorithms 
Number of hidden neurons 

4 11 17 20 27 30 

1  

MLPBP 3.11e-1 6.16e-1 1.86e-2 3.41e-3 9.63e-3 7.72e-3 

ANFIS 4.12e-7 2.95e-9 7.00e-11 6.61e-11 1.98e-21 6.12e-21 

MLPGA 0.00 0.00 0.00 0.00 0.00 0.00 

MLPPSO 5.92e-40 6.85e-42 8.81e-96 5.65e-89 9.78e-56 0.44e-90 

MLPTLBO 0.00 0.00 0.00 0.00 0.00 0.00 

MLPCIBO 8.12e-56 5.89e-63 7.81e-56 8.68e-81 4.71e-65 1.34e-71 

2  

MLPBP 6.32e-1 8.51e-2 2.32e-2 1.89e-3 5.92e-3 8.88e-1 

ANFIS 0.88e-9 8.45e-18 2.33e-19 5.43e-16 8.08e-18 3.23e-15 

MLPGA 0.00 0.00 0.00 0.00 0.00 0.00 

MLPPSO 6.55e-08 4.45e-19 6.88e-17 6.85e-07 6.32e-19 2.32e-11 

MLPTLBO 5.56e-20 2.36e-18 3.44e-18 4.12e-18 9.47e-18 6.87e-23 

MLPCIBO 1.11e-10 3.45e-13 2.19e-11 8.78e-11 6.97e-15 8.00e-24 

3  

MLPBP 1.56e-1 9.21e-3 0.94e-3 1.84e-2 6.44e-3 7.11e-2 

ANFIS 5.42e-9 5.41e-11 8.78e-09 9.10e-13 9.47e-14 2.88e-19 

MLPGA 1.54e−21 0.00 3.54e−89 2.87e−91 6.15e−29 5.55e−31 

MLPPSO 9.14e−13 1.62e−09 3.74e−08 0.21e−07 0.99e−09 1.63e−08 

MLPTLBO 0.00 0.00 0.00 0.00 0.00 9.79e−90 

MLPCIBO 8.56e-13 4.38e-13 9.04e-14 5.54e-12 8.89e-31 6.66e-21 

4  

MLPBP 1.99e-02 9.49e-03 4.69e-01 3.21e-02 7.47e-03 1.81e-01 

ANFIS 4.38e-08 3.34e-11 4.83e-11 2.45e-10 2.34e-21 2.48e-14 

MLPGA 0.00 0.00 1.18e-52 4.82e-44 0.00 0.00 

MLPPSO 2.22e-18 7.62e-17 7.34e-13 4.32e-14 7.74e-15 5.32e-19 

MLPTLBO 0.00 0.00 0.00 0.00 0.00 0.00 

MLPCIBO 5.49e-10 4.45e-17 5.94e-18 3.56e-18 3.45e-20 8.59e-19 

5  

MLPBP 2.96e-2 2.35e-2 6.67e-01 3.32e-02 5.37e-03 9.98e-03 

ANFIS 3.53e-11 7.93e-17 0.09e-19 6.65e-16 0.09e-13 2.65e-12 

MLPGA 0.00 0.00 0.00 0.00 0.00 0.00 

MLPPSO 7.76e-19 7.25e-21 7.61e-19 6.21e-09 9.99e-21 7.32e-21 

MLPTLBO 0.00 0.00 0.00 0.00 0.00 0.00 

MLPCIBO 0.00 9.99e-79 5.68e-53 6.14e-51 0.00 0.00 

6  

MLPBP 1.54e-03 8.54e-02 3.45e-01 4.65e-03 6.15e-01 3.33e-01 

ANFIS 1.78e-11 1.45e-78 3.56e-29 8.95e-31 0.00 0.00 

MLPGA 0.00 0.00 0.00 0.00 0.00 0.00 

MLPPSO 2.55e-09 4.65e-15 3.25e-19 1.44e-17 8.96e-09 4.54e-11 

MLPTLBO 0.00 0.00 0.00 0.00 0.00 0.00 

MLPCIBO 1.87e-09 1.48e-11 4.51e-09 2.02e-17 0.09e-21 9.11e-24 
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Table 7.15 gives the experimental results and comparison of all adopted algorithms for 

different hidden nodes. Best results for joint variables specified in bold letters and 

presented in Figure 7.30 through Figure 7.33. Figure 7.31 (a), (b), (c), (d) and (e) shows 

the selected best mean square curve of MLPGA for all joint variables. Similarly best 

chosen mean square curve of MLPTLBO from Table 7.16 depicted in Figure 7.32 (a), 

(b), (c), (d) and (e) for all joint variables.  

 

(a) Best mean square error for  1  

 

(b) Best mean square error for  2  

 

(c) Best mean square error for  3  
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(d) Best mean square error for  4  

 

(e) Best mean square error for  5  

 

(f) Best mean square error for  6  

Figure 7.30 (a), (b), (c), (d), (e) and (f) are mean square error curve of MLPBP for all 

joint angles. 
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(a) Best mean square error for  1  

 

(b) Best mean square error for  2  

 

(c) Best mean square error for  3  
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(d) Best mean square error for  4  

 

(e) Best mean square error for  5  

 

(f) Best mean square error for  6  

Figure 7.31 (a), (b), (c), (d), (e) and (f) are mean square error curve of MLPGA for all 

joint angles.  
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(a) Best mean square error for  1  

 

 

(b) Best mean square error for  2  

 

(c) Best mean square error for  3  
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(d) Best mean square error for  4  

 

(e) Best mean square error for  5  

 

(f) Best mean square error for  6  

Figure 7.32 (a), (b), (c), (d), (e) and (f) are mean square error curve of MLPTLBO for 

all joint angles. 
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(a) Best mean square error for  1  

 

(b) Best mean square error for  2  

 

(c) Best mean square error for  3  
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(d) Best mean square error for  4  

 

(e) Best mean square error for  5  

 

(f) Best mean square error for  6  

 Figure 7.33 (a), (b), (c), (d), (e) and (f) are mean square error curve of 

MLPCIBO for all joint angles.  
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7.3.4 Inverse kinematic solution of 6-dof ABB IRB-1400 manipulator  

This section pertains, ABB IRB-1400 (Type A2) robot manipulator for the inverse 

kinematic solution. The detail description of the adopted robot manipulator model and 

kinematic parameters are presented in chapter 3. The quaternion vector based 

mathematical modelling of the adopted robot manipulator is given in chapter 4. Using 

kinematic equations from section 4.3.6, several joint variables and end effector 

coordinates are depicted in Table 7.17.  MATLAB coding is used to generate the joint 

variables and end effector coordinates. The generated data sets are used for training and 

testing of the adopted intelligence based methods. Once the training is completed the 

actual output is compared with the desired output so as to get mean square error for all 

joint variables. The mean square errors for all joint variables are obtained using ANN 

and hybrid ANN models. The configuration of the MLPNN with different number of 

hidden neurons is presented in Table 7.16.  

Table 7.16 Configuration of MLPNN 

 

 

 

 

 

 

 

 

 

Following the similar procedure of PUMA 560 manipulator, the inverse kinematic 

solution is presented using MLPNN and hybrid MLPNN methods. From the previous 

research work MLPNN produces poor results for the prediction of inverse kinematic 

solutions. Therefore, The ANN model is hybridized with the fuzzy logic and other 

optimization based algorithms.  The comparison has been made with the several hybrid 

models like MLPPSO, MLPGA, MLPTLBO, ANFIS and MLPCIBO. Initial 

approximations for all adopted optimization algorithms are similar to the case of 5-dof 

and PUMA manipulators. Quaternion vector method is used to calculate the inverse 

kinematic solution for the PUMA manipulator and sample data sets are given in Table 

7.17. The desired joint variables are taken as input for the training of hybrid ANN 

model.  

Table 7.18 provides the experimental results and comparison of all adopted algorithms 

for different hidden nodes. Best performance of the algorithm is presented in bold 

letters with mean square error plots. The obtained mean square error values are very 

Sl. Parameters Values taken 

1 Learning rate 0.96 

2 Momentum parameter 0.34 

3 Number of epochs 1000 

4 Number of inputs 3 

5 Number of output 6 

6 Target datasets  500 

7 Testing datasets 100 

8 Training datasets 700 
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low as compared to MLPNN and ANFIS models. Therefore, fusion of MLPNN model 

with optimization algorithms proves strong convergence ability along with better 

prediction of inverse kinematic solution. On the other hand, ANFIS perform better than 

MLPBP see Table 7.18. Although, the results produces through the ANFIS is quite 

acceptable as compared to MLPBP but hybrid ANN's are more efficient and accurate. 

The convergence of MLPBP and ANFIS are poor due to its local searching ability. 

Therefore, hybrids ANN are more efficient and yields global searching ability. Figure 

7.34 (a), (b), (c), (d) and (e) shows the selected best mean square curve of MLPGA for 

all joint variables.  

Table 7.17 Desired joint variables determined through quaternion algebra  

 

 

 

 

 

 

 

SN 
 Joints variables and positions determined through quaternion algebra 

θ1 θ 2 θ 3 θ 4 θ 5 θ 6 X Y Z 

 

1    58.3056    3.3921       39.6834    88.3088    72.2516   155.4015    12.4633    47.5939   104.7516 

 

2    53.1530    20.0422   -56.6319    81.8867    14.0897   165.9524   -24.6403    -62.3966    91.8795 

 

3    86.3071    45.3925    12.6747     50.4011    80.0651    41.8404   -21.6169     9.3034     118.0053 

 

4    87.1289    38.6382     9.3534      44.1845    11.7174   264.8126   -12.1602     8.8344     126.5538 

 

5    98.9140    49.3338    42.9245     85.5255    56.5194    36.9996   -50.3168     18.7116    103.2790 

 

6    51.4737    66.4455   -13.9112    120.3588    47.1847    49.7577     2.3410     -23.3834    122.2380 

 

7    40.9223    28.2572     7.1238      59.7338   103.5930   124.9550    -5.3869     15.7569    116.4455 

 

8   121.7940    61.2329    63.2612    103.3004    59.3777   149.5440   -66.7556   -14.1633    83.3454 

 

9   130.8836     4.7135   -48.6507    136.3077    77.2835   252.4995    35.9920    -48.1656    91.8021 

 

10   134.5108    56.2707   -16.2299    17.0630    24.0029   283.9313    19.6269    -0.8582    125.0100 

 

11   124.1020    23.6187   -45.5391    17.1552    61.1137   228.1513    38.6717    -31.1640    105.8820 
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Table 7.18 Mean square error for all training samples of hybrid MLPNN 

Output Algorithms 
Number of Hidden Nodes 

4 11 17 20 27 30 

1  

MLPBP 0.12e-01 3.86e-02 5.62e-03 1.85e-01 2.15e-03 4.56e-04 

ANFIS 9.04e-03 5.14e-01 7.24e-02 0.99e-04 8.73e-04 1.15e-03 

MLPGA 0.00 0.00 0.00 0.00 0.00 0.00 

MLPTLBO 0.00 0.00 0.00 1.51e-49 3.48e-51 8.45e-47 

MLPCIBO 4.52e-13 2.32e-13 6.96e-19 4.85e-17 6.99e-15 7.31e-24 

MLPPSO 9.41e-23 9.60e-37 2.63e-17 1.03e-31 2.87e-09 4.45e-08 

2  

MLPBP 9.99e-03 1.81e-03 0.37e-02 4.73e-03 5.82e-02 0.99e-03 

ANFIS 1.06e-04 3.55e-03 7.34e-02 6.11e-04 2.04e-04 7.64e-02 

MLPGA 0.00 0.00 0.00 0.00 0.00 0.00 

MLPTLBO 3.01e-79 8.85e-80 7.25e-91 6.12e-91 5.47e-90 4.19e-90 

MLPCIBO 5.55e-98 7.36e-89 5.92e-40 9.49e-35 8.89e-40 6.85e-42 

MLPPSO 4.96e-89 8.81e-96 5.65e-89 6.87e-52 9.78e-56 0.44e-90 

3  

MLPBP 1.60e-03 5.21e-02 3.48e-03 4.44e-02 7.34e-01 0.48e-02 

ANFIS 3.66e-04 4.72e-04 1.01e-01 8.24e-03 6.42e-03 2.89e-03 

MLPGA 0.00 0.00 6.89e-61 1.43e-63 1.11e-76 0.00 

MLPTLBO 5.56e-40 7.61e-30 1.89e-44 2.55e-41 3.12e-67 1.23e-36 

MLPCIBO 4.95e-80 3.31e-45 3.18e-51 9.04e-79 3.39e-16 6.11e-15 

MLPPSO 1.66e-14 3.91e-13 9.99e-19 2.29e-21 6.78e-21 7.78e-16 

4  

MLPBP 0.07e-01 1.33e-03 9.09e-04 0.22e-01 6.48e-02 3.65e-03 

ANFIS 8.56e-05 0.04e-01 2.33e-03 0.86e-01 5.31e-03 1.91e-04 

MLPGA 1.33e-29 2.95e-31 0.18e-35 1.02e-39 0.00 0.00 

MLPTLBO 4.47e-16 3.33e-31 8.56e-11 3.85e-12 8.21e-19 6.45e-19 

MLPCIBO 6.55e-08 1.09e-09 5.21e-09 4.45e-19 3.11e-18 6.88e-17 

MLPPSO 6.87e-18 9.51e-19 8.76e-18 8.23e-15 3.54e-08 7.12e-19 

5  

MLPBP 9.11e-03 1.86e-02 0.06e-01 4.67e-03 8.22e-02 6.49e-04 

ANFIS 1.08e-05 3.44e-02 4.86e-03 0.67e-02 3.55e-01 1.49e-04 

MLPGA 0.09e-28 8.64e-29 1.30e-33 6.54e-36 7.29e-29 4.86e-28 

MLPTLBO 6.85e-07 8.12e-03 6.32e-19 2.32e-11 7.67e-12 2.37e-12 

MLPCIBO 4.95e-15 4.35e-14 3.27e-16 1.18e-17 3.00e-09 0.74e-08 

MLPPSO 4.68e-11 2.21e-13 4.12e-17 2.87e-16 3.72e-15 2.11e-10 

6  

MLPBP 0.02e-01 5.74e-04 9.23e-03 4.61e-02 3.00e-03 0.46e-01 

ANFIS 6.87e-04 3.48e-05 6.77e-03 8.15e-02 6.47e-01 0.18e-03 

MLPGA 5.94e-21 3.86e-26 0.89e-21 4.81e-19 2.32e-17 6.55e-16 

MLPTLBO 0.30e-19 1.34e-11 6.76e-15 7.15e-18 0.87e-12 3.51e-18 

 MLPCIBO 9.14e−13 8.27e−11 6.25e−12 1.62e−09 8.45e−08 3.74e−08 

 
MLPPSO 0.21e−07 1.39e−04 0.99e−09 1.63e−08 8.44e-09 8.04e-08 
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(a) Best mean square error for  1  

 

(b) Best mean square error for  2  

 

(c) Best mean square error for  3  
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(d) Best mean square error for  4  

 

 

(e) Best mean square error for  5  

 

(f) Best mean square error for  6  

Figure 7.34 (a), (b), (c), (d), (e) and (f) are mean square error curve of MLPGA for 

all joint angles. 
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The optimization of ANN parameters such as weight and bias provides the better 

efficiency and prediction of results. MLPGA and MLPTLBO equally perform better 

than MLPPSO and MLPCIBO. On the other hand, performances of MLPGA compared 

to all adopted algorithms are acceptable. It can also be observed that hybridization with 

GA shows the fast searching ability and with better exploitation of the solution. 

However, TLBO shows strong exploration ability than other algorithms. The results of 

the MLPTLBO are depicted in Table 7.18. Therefore, the hybridization of optimization 

algorithms with MLP models produces better results as compared to traditional back 

propagation algorithms. Also these techniques guarantee faster convergence rate. 

7.3.5 Inverse kinematic solution of 5-dof ASEA IRb-6 manipulator  

In this section, ASEA IRb-6 robot manipulator is considered for the inverse kinematic 

solution. This manipulator is widely used in industries as well as in research areas. The 

detail description of the adopted robot manipulator is presented in chapter 3. The 

mathematical modelling of the adopted robot manipulator is given in chapter 4. 

Following the kinematics equations and DH-parameters of the adopted robot, the joint 

variables and end effector coordinates are obtained using MATLAB coding. The 

prepared data sets are used as an input to train the adopted ANN models for the 

prediction of inverse kinematic of the manipulator. After training of the adopted 

configurations of the neural network models and hybrid neural networks, the inverse 

kinematic solutions are compared with the conventional method based solution. Further 

the mean square errors for all joint variables are calculated on the basis of actual data 

and desired data sets. The configuration of the MLPNN with different number of hidden 

neurons is presented in Table 7.19.  

Table 7.19 Configuration of MLPNN 

 

 

 

 

 

 

 

 

 

 

Sl. Parameters Values taken 

1 Learning rate 0.96 

2 Momentum parameter 0.34 

3 Number of epochs 1000 

4 Number of inputs 3 

5 Number of output 6 

6 Target datasets  500 

7 Testing datasets 100 

8 Training datasets 700 
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Table 7.20 Desired joint variables determined through quaternion algebra  

Table 7.21 Mean square error for all adopted algorithms 

SN 
Joints variables and positions determined through quaternion algebra 

θ1 θ 2 θ 3 θ 4 θ 5 X Y Z 

1    99.6981  85.4732  -135.6945  -143.2309  109.1581 595.7279  -303.9048 -294.6464 

2   310.6737    59.8666  140.0265   27.9008    39.4117    78.5678  -334.9327    71.8066 

3   329.3916    81.7060  144.4626   -82.6927   333.3707   565.9467  -293.7725    43.1890 

4   177.9217    95.9999  -142.7337  67.0121   283.7942   510.2091  -572.3394  -611.0379 

5   157.1849    95.2089  143.8745  -219.1774    32.5522   109.9897  -242.1020  -191.0548 

6   329.4058    74.2685  39.7596   91.7458   313.3460   458.8033  -373.0525  -200.7021 

7   310.8852    69.1873  -146.0051  126.3939   189.3874    40.1121  -656.7506    -4.1938 

8   195.4502    84.4757  48.2710   6.5640   138.6096   215.9464  -157.9838  -507.8093 

9   251.0410    92.8778  -4.2599  -202.7799   178.0429   247.9422    -0.6056   -32.8324 

10   106.2674    96.7097  40.1150   -34.5511    86.8883    21.1918  -390.7909  -179.9546 

11   195.0605   100.0935  -138.8201  2.5618   207.9951   276.6552  -407.2539  -109.6221 

Output Algorithms 
Number of Hidden Nodes 

4 11 17 20 27 30 

1  

MLPBP 5.26e-01 4.16e-03 0.99e-01 3.98e-05 7.86e-04 1.74e-03 

ANFIS 9.47e-02 3.33e-01 5.00e-03 6.20e-03 4.51e-01 9.12e-02 

MLPGA 0.00 0.00 0.00 0.00 0.00 0.00 

MLPTLBO 4.65e-11 6.51e-21 3.08e-21 2.79e-18 2.13e-24 6.46e-21 

MLPCIBO 1.51e-11 0.51e-12 4.52e-08 6.18e-10 1.00e-11 0.54e-12 

MLPPSO 2.58e-06 5.70e-07 2.31e-09 3.15e-12 2.09e-10 3.50e-19 

2  

MLPBP 7.65e-04 1.40e-02 0.43e-03 1.43e-03 3.25e-01 0.01e-03 

ANFIS 6.44e-02 3.77e-03 0.11e-05 3.52e-02 1.56e-02 6.42e-01 

MLPGA 0.00 1.63e-51 3.86e-48 5.74e-71 0.00 0.00 

MLPTLBO 2.22e-18 3.56e-14 7.78e-18 7.62e-17 3.35e-16 7.34e-13 

MLPCIBO 4.32e-14 4.26e-14 7.74e-15 5.32e-19 1.47e-05 4.60e-06 

MLPPSO 1.20e-08 2.04e-11 1.18e-15 7.40e-14 2.07e-20 3.42e-15 

3  

MLPBP 5.44e-03 0.23e-04 4.58e-02 6.78e-01 7.21e-02 9.85e-03 

ANFIS 5.12e-03 0.56e-04 4.68e-03 4.89e-03 4.33e-02 7.29e-03 

MLPGA 6.64e−34 7.64e−31 2.22e−21 0.05e−30 0.00 0.00 

MLPTLBO 0.99e-21 5.35e-18 6.15e-10 5.21e-11 6.75e-10 6.16e-18 

MLPCIBO 7.76e-19 6.78e-18 1.00e-19 7.25e-21 0.85e-25 7.61e-19 

MLPPSO 2.26e-15 1.85e-21 9.11e-11 0.93e-21 9.42e-17 0.25e-18 

4  

MLPBP 6.88e-03 0.99e-03 1.44e-03 4.00e-01 0.45e-01 7.42e-01 

ANFIS 6.48e-06 7.04e-01 6.47e-02 6.44e-03 8.11e-02 4.00e-03 

MLPGA 0.00 0.00 0.00 0.00 2.14e-69 3.15e-79 

MLPTLBO 6.21e-09 2.11e-19 9.99e-21 7.32e-21 5.45e-81 4.32e-61 

MLPCIBO 4.78e-19 5.55e-18 6.78e-17 6.54e-16 6.48e-15 7.15e-15 

MLPPSO 9.87e-11 6.58e-12 4.58e-19 7.47e-09 2.55e-09 6.45e-19 

5  

MLPBP 7.44e-04 1.05e-01 7.53e-02 4.12e-01 6.41e-03 7.22e-03 

ANFIS 3.33e-01 1.67e-03 4.22e-04 8.04e-02 5.82e-02 7.77e-01 

MLPGA 0.00 0.00 0.00 0.00 0.00 0.00 

MLPTLBO 1.45e-21 4.65e-15 1.02e-11 3.25e-19 1.44e-17 1.11e-12 

MLPCIBO 8.96e-09 4.54e-11 8.54e-12 3.41e-11 2.07e-15 4.68e-21 

MLPPSO 0.85e-19 5.62e-11 3.13e-21 0.00 0.00 0.00 
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Following the similar procedure of PUMA 560 manipulator, the inverse kinematic 

solution is presented using MLPNN and hybrid MLPNN methods.  The hybrid MLP 

models are as follows MLPPSO, MLPGA, MLPTLBO, ANFIS and MLPCIBO.   

Initialization of algorithms and certain approximations are selected randomly without 

any specific tuning similar to the previous research work. After initialization of the 

algorithm the joint variables for the selected manipulator is obtained and compared with 

the quaternion vector method based solution. The sample data set generated by the 

conventional tool is presented in Table 7.20. From the generated data 100 sets of joint 

variables are considered for the training of the network.  The comparisons of all 

adopted algorithms are presented in Table 7.21 with different number of hidden nodes. 

The predicted inverse kinematic solutions from the adopted models are compared with 

the actual solution and later the mean square error is calculated. The best mean square 

error is presented in bold letters (see Table 7.21). Figure 7.35 (a), (b), (c), (d) and (e) 

shows the selected best mean square curve of MLPGA for all joint variables. Similarly 

best chosen mean square error of other adopted algorithm is presented in Table 7.21.   

 

(a) Best mean square error for  1  

 

(b) Best mean square error for  2  
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(c) Best mean square error for  3  

 

(d) Best mean square error for  4  

 

(e) Best mean square error for  5  

Figure 7.35 (a), (b), (c), (d) and (e) are mean square error curve of MLPGA for all 

joint angles 

7.3.6 Inverse kinematic solution of 6-dof STAUBLI RX160 L manipulator  

In this section, 6-dof STAUBLI RX160 L robot manipulator is adopted for the inverse 

kinematic solution. The detail explanation of the adopted robot manipulator is presented 

in chapter 3. The mathematical modelling using conventional tool of the adopted robot 

manipulator is given in chapter 4. Using the kinematic equations of the adopted 
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manipulator the training data sets are prepared for the prediction of invers kinematic 

solution. The work is perform in the MATLAB 2013 a. All joint variables and end 

effector positions are calculated using the kinematic equations.  The prepared data sets 

are presented in Table 7.23 which is later used as an input for the training of the neural 

network models. Once the training is completed, the desired output is compared with 

the actual data sets. Hence the mean square error from the desired value and actual 

value has been calculated. The configuration of the MLPNN with different number of 

hidden neurons is presented in Table 7.22.  

Table 7.22 Configuration of MLPNN 

 

 

 

 

 

 

 

The configuration of the neural network model from Table 7.22 gives the different 

parameters for the training the neural network models. Based on the above 

configurations the prediction of inverse kinematic solution is done. Later the other 

parameters such as weight and bias are updated using the back propagation algorithm. 

The experimental results and comparison with other hybrid models are presented in 

Table 7.24. The adopted algorithms for the prediction of inverse kinematic solution are 

similar to the previous work. The comparison has been made on the basis of mean 

square error of the solution. There is no specific tuning of the associated parameters for 

the training of ANN models. The desired joint variables and end effector positions are 

presented in Table 7.23.  

Table 7.23 Desired joint variables determined through quaternion algebra  

 

 

 

 

 

 

Sl. Parameters Values taken 

1 Learning rate 0.06 

2 Momentum parameter 0.31 

3 Number of inputs 3 

4 Number of output 6 

5 Target datasets  500 

6 Testing datasets 200 

7 Training datasets 300 

SN 
 Joints variables and positions determined through quaternion algebra 

θ1 θ 2 θ 3 θ 4 θ 5 θ 6 X Y Z 

1   109.9995    58.2048 30.9958      164.4046   105.3653   190.8809     5.9422    -6.4931    34.2919 

2    57.1830     7.1038   141.7618     219.3840   115.7053   160.3292   -16.6496    -9.1300    17.8256 

3   109.3382    41.0370 109.5175     182.9499   112.0530   109.3752    -1.5343    -3.7763    28.4963 

4   126.0248    32.7009 67.1041      172.8914   113.6765   219.8415    -0.1470    -4.4910    33.5340 

5   136.5495    47.7934 94.1527       14.0607   110.3387   216.8484     4.3838   -64.9257    37.5117 

6   103.3780   123.7474 59.1928      130.5230   112.9944   120.9618    19.0998    -1.2647    50.2394 

7   129.4171    34.1353 106.0208      64.6734   118.2626    53.1042   -21.0814   -44.0966    56.9321 

8    77.5296    64.7463  101.2878     157.0967   116.5815   140.5798    -5.8106    -3.6520    41.8311 

9    40.9348    87.3007  111.7118      51.4675   105.8061   207.2419   -48.2125   -26.5668    52.5295 

10    64.7363   119.7839 89.1456       12.7334   117.3080   103.4015     5.2430   -65.0266    36.8321 
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Table 7.24 Mean square error for all training samples of hybrid MLPNN 

The experimental results and comparison of all adopted algorithms with several 

different numbers of hidden nodes are presented in Table 7.24. The perform work is 

similar to previous sections. The use of fuzzy sets with the neural network models is 

producing better results as compared to MLPNN model. The results for MLPBP and 

ANFIS are given in Table 7.24. The updating of the weight and bias using back 

propagation algorithm is slow and stagnate at local optimum point. Moreover, back 

Output Algorithms 
Number of Hidden Nodes 

4 11 17 20 27 30 

1  

MLPBP 0.01e-02 3.09e-01 7.63e-02 7.16e-03 0.11e-03 6.11e-01 

ANFIS 5.44e-04 6.78e-02 0.18e-03 5.07e-03 4.99e-04 7.19e-03 

MLPGA 1.23e-78 8.54e-71 3.85e-89 1.84e-75 0.00 0.00 

MLPTLBO 8.34e-24 8.70e-27 3.88e-27 6.03e-30 6.78e-80 1.25e-75 

MLPCIBO 2.59e-12 8.56e-16 2.66e-15 5.94e-14 2.18e-18 1.99e-19 

MLPPSO 5.70e-14 3.12e-14 7.25e-18 2.51e-16 7.99e-16 6.35e-22 

2  

MLPBP 7.24e-03 2.11e-01 9.78e-03 7.22e-02 0.22e-03 1.70e-01 

ANFIS 9.26e-03 4.99e-04 6.78e-01 7.24e-01 6.00e-03 1.08e-03 

MLPGA 3.55e-99 3.96e-67 0.00 0.00 0.00 0.00 

MLPTLBO 1.01e-69 6.67e-81 3.25e-80 8.32e-90 4.47e-91 5.89e-80 

MLPCIBO 6.12e-55 4.47e-41 3.21e-50 1.09e-49 0.00 0.00 

MLPPSO 6.32e-41 8.59e-40 3.39e-45 5.14e-49 7.43e-51 9.81e-45 

3  

MLPBP 2.14e-04 3.77e-03 4.99e-01 6.17e-05 0.16e-01 7.33e-02 

ANFIS 8.33e-01 6.13e-03 7.49e-04 9.12e-02 6.07e-03 5.42e-02 

MLPGA 1.21e-19 9.82e-22 8.31e-18 1.14e-20 8.87e-41 7.89e-79 

MLPTLBO 3.15e-09 6.12e-12 8.11e-07 1.09e-08 1.21e-09 3.85e-09 

MLPCIBO 3.21e-09 5.45e-09 3.89e-08 9.51e-09 4.16e-10 8.47e-11 

MLPPSO 1.71e-25 2.05e-17 1.33e-14 6.03e-30 2.56e-10 1.24e-11 

4  

MLPBP 0.023 5.11e-03 4.00e-03 6.89e-02 3.71e-02 0.17e-03 

ANFIS 7.89e-02 9.88e-05 4.37e-03 6.66e-01 5.41e-03 1.03e-01 

MLPGA 1.94e−13 1.88e−26 0.00 0.00 9.94e−31 7.23e−30 

MLPTLBO 7.97e-18 1.75e-22 3.66e-24 4.47e-19 5.71e−15 8.25e−14 

MLPCIBO 2.01e-08 8.87e-07 9.91e-09 7.12e-10 1.32e-09 2.22e-10 

MLPPSO 5.72e-13 1.38e-17 6.52e-14 3.18e-13 1.29e-14 5.19e-20 

5  

MLPBP 7.56e-04 6.89e-01 4.66e-02 6.99e-02 1.00e-03 0.01e-06 

ANFIS 8.99e-06 1.06e-03 8.49e-03 3.88e-01 7.86e-06 5.45e-03 

MLPGA 7.36e-14 2.71e-24 0.00 0.00 0.00 0.00 

MLPTLBO 3.72e−19 9.05e−29 2.97e-24 1.68e-19 1.02e-25 5.35e-24 

MLPCIBO 3.72e−03 3.27e−03 6.07e−02 1.17e−03 6.06e−03 8.94e−03 

MLPPSO 2.26e−02 2.34e−02 6.72e−03 9.25e−04 1.11e-17 2.45e-15 

6  

MLPBP 7.66e-03 1.04e-05 6.44e-03 1.33e-02 4.99e-05 4.04e-03 

ANFIS 4.71e-03 9.08e-03 7.91e-03 1.05e-02 6.03e-01 8.44e-03 

MLPGA 6.04e-13 4.23e-15 7.75e-11 7.06e-19 0.00 0.00 

MLPTLBO 6.45e-17 6.51e-18 2.24e-15 6.23e-14 3.21e-15 3.15e-17 

 MLPCIBO 1.47e-05 4.69e-06 1.20e-08 2.04e-10 1.98e-11 2.49e-18 

 
MLPPSO 6.63e-18 4.21e-21 6.04e-13 4.23e-15 7.75e-11 7.06e-19 
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propagation algorithm consumes more computational time as compared to ANFIS and 

other hybrid algorithms. Therefore, to increase the exploration and exploitation ability, 

it is required to fuse optimization algorithm with MLPNN model.  

The results of the hybrid ANN models are presented in Table 7.24. The best mean 

square error is specified in bold letter for all adopted algorithms. Figure 7.36 gives the 

overall best performance of the hybrid model using genetic algorithm.  Figure 7.36 (a), 

(b), (c), (d) and (e) shows the selected best mean square curve of MLPGA for all joint 

variables. Similarly best chosen mean square error for all other algorithms can be 

obtained from Table 7.24.   

 

(a) Best mean square error for  1  

 

(b) Best mean square error for  2  
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(c) Best mean square error for  3  

 

(d) Best mean square error for  4  

 

(e) Best mean square error for  5  
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(f) Best mean square error for  6  

Figure 7.36 (a), (b), (c), (d) and (e) are mean square error curve of MLPGA  

7.4 Metaheuristic approach for inverse kinematics solution 

 Inverse kinematics solution of robot manipulators has been considered and developed 

different solution scheme in last recent year because of their multiple, nonlinear and 

uncertain solutions. Optimization methods can be applied to solve inverse kinematics of 

manipulators and or general spatial mechanism. Basic numerical approaches like 

Newton-Raphson method can solve nonlinear kinematic formulae or another approach 

is predictor corrector type methods to assimilate differential kinematics formulae. But 

the major issues with the numerical method are that, when Jacobian matrix is ill 

conditioned or possess singularity then it does not yield a solution. Moreover, when the 

initial approximation is not accurate then the method becomes unbalanced even though 

initial approximation is good enough might not converge to optimum solution. 

Therefore optimization based algorithms are quite fruitful to solve inverse kinematic 

problem. Generally these approaches are more stable and often converge to global 

optimum point due to minimization problem. The key factor for optimization 

algorithms is to design objective function which might be complex in nature. On the 

other hand, metaheuristic algorithms generally based on the direct search method which 

generally do not need any gradient based information. In case of heuristic based 

algorithms local convergence rate is slow therefore some global optimization 

algorithms like GA, TLBO, PSO etc. can be gainfully used. 

Therefore, the key purpose of this work is focused on minimizing the Euclidian distance 

of end effector position based resolution of inverse kinematics problem with 

comparison of adopted optimization algorithms obtained solution for 5-dof and 6-dof 

revolute robot manipulators. The objective function (fitness function) mathematical 
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modelling is given in previous chapter. The result of each algorithm is weighed by 

using inverse kinematics equations to obtain statistics about their error. In other words, 

Cartesian coordinates have been used as an input to calculate each joint angle. Finally 

4th order spline is used to generate trajectory and corresponding joint angles of 

manipulator using optimization algorithms and quaternion for 5-dof manipulator.  The 

mathematical modelling of the adopted configuration of robot manipulators and detail 

derivation of forward and inverse kinematics of 5-dof manipulator using quaternion 

algebra is given in chapter 3. The experimental results as obtained from simulations are 

discussed elaborately in later section. 

7.4.1 Inverse kinematic solution for 4-dof SCARA manipulator 

In this section, inverse kinematic solution of 4-dof SCARA robot manipulator is 

presented. The mathematical formulations and background of the research topic has 

been presented in chapter 6. The formulation of the objective function (fitness function) 

is obtained using position and orientation based error method. The detail description of 

the formulation of the objective function is presented in section 6.4. Using the position 

and orientation error subjected to the joint variables constrained is solved using several 

optimization algorithms. Moreover, the obtained inverse kinematic solutions are 

compared with the conventional solution of the inverse kinematic problem. Simulations 

and MATLAB programs are used to check the performance and effectiveness of the 

adopted optimization algorithms for the inverse kinematic solutions. Five different 

positions of the end effector have been considered for the comparative evaluation of the 

invers kinematic solutions. Five different positions of the end effector are presented in 

Table 7.25 using conventional tool.  

Table 7.25 Five different positions and joint variables 

 

 

 

 

Table 7.26 represents the comparative results of the all adopted algorithms for the 

evaluation of the inverse kinematic problem of 4-dof SCARA manipulator. The 

experiment of the adopted optimization algorithms doesn‘t follow any specialized 

tuning for the associated parameters. From Table 7.26, it can be observed that the 

objective function value for genetic algorithm is better than all other algorithms. On the 

other hand, TLBO and GWO are performing equally on the basis of function 

Positions 
Joint angles 

1  2  3d  4  

P1(102.86, 302.11, -233.33) 13.3333 14.44 83.33 200.00 

P2(-16.91, 193.65, -250.00) 40.00 43.33 100.00 240.00 

P3( -256.40, -295.35, -266.67) 66.66 72.22 116.66 280.00 

P4( 63.17, -77.59, -283.33) 93.33 101.11 133.33 320.00 

P5(  351.91, 167.19, -300.00) 120.0 130.13 150 360 
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evaluation. The optimum value for the Euclidean distance norm is 0; the obtained 

results for adopted algorithms are acceptable if it varies within the limit of 0.001. 

Therefore, it can be observed that the optimization based inverse kinematic solutions 

are acceptable. The comparisons on the basis of computational time for all adopted 

algorithms are discussed in chapter 8.   

Table 7.26 Five different positions and joint variables through adopted algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The comparison of the obtained solutions using optimization algorithms are presented 

in Figure 7.37 through Figure 7.41. The solution obtained through the optimization 

methods are compared with the quaternion based solution. All joint variables for five 

Positions 
PSO Joint angles Function Value 

1  2  3d  4  

P1 10.25 99.41 88.02 159.26 12.90 

P2 40.11 -45.36 75.96 200.14 0 

P3 55.89 70.25 100.94 270.87 -0.46 

P4 22.56 18.96 80.23 -126.36 -290.99 

P5 71.54 30.14 66.74 265.11 0 

Positions 
GWO Joint angles Function Value 

1  2  3d  4  

P1 11.02 100.93 83.10 270.36 0 

P2 14.43 152.91 77.04 265.15 -320.56 

P3 42.86 16.48 55.47 124.68 0 

P4 12.45 75.86 37.95 276.42 0.0094 

P5 10.63 77.52 86.34 310.24 0 

Positions 
TLBO Joint angles Function Value 

1  2  3d  4  

P1 10.22 35.68 71.24 105.26 -222.56 

P2 66.89 15.73 83.14 265.66 -147.8 

P3 71.59 9.31 149.22 191.36 0 

P4 11.33 57.16 150.36 200.18 110.6 

P5 96.85 55.48 120.30 222.59 0 

Positions 
GA Joint angles Function Value 

1  2  3d  4  

P1 11.36 14.25 71.25 270.23 0 

P2 41.25 44.11 91.63 230.55 0 

P3 60.88 72.99 115.94 270.71 0 

P4 -95.24 100.08 121.27 280.45 0 

P5 120.29 121.56 149.56 310.29 0 

Positions 
CIBO Joint angles Function Value 

1  2  3d  4  

P1 10.25 55.26 46.58 180.25 -120.63 

P2 11.69 45.89 115.85 310.79 -1.03 

P3 44.89 51.26 149.66 280.44 0.0094 

P4 73.94 67.61 111.09 198.46 0.0768 

P5 96.15 15.63 101.76 175.48 0 
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positions of end effector are indicated in Figure 7.37 through Figure 7.41.  Figure 7.37 

gives comparative results for the position one (P1) using all adopted algorithms. For 

position P1 the joint variables using PSO and GWO are closed to the solution obtained 

through quaternion method. Similarly for positions P2 to P4, the solutions obtained 

through the GA are better as compared to other optimization algorithms. Therefore, the 

functional value and joint variables is acceptable using GA algorithm. Moreover, TLBO 

and GWO equally perform for the inverse kinematic solution.  

 

 

Figure 7.37 Comparison of joint variables for position 1 

 

Figure 7.38 Comparison of joint variables for position 2 
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Figure 7.39 Comparison of joint variables for position 3 

 

 

Figure 7.40 Comparison of joint variables for position 4 
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Figure 7.41 Comparison of joint variables for position 5 

7.4.2 Inverse kinematic solution for 5-dof manipulator 

Simulations have been made to check the performance and effectiveness of adopted 

optimization algorithms and comparison to solve inverse kinematic problem of 5-dof 

manipulator. Five different positions of end effector have been considered for inverse 

kinematics evaluation as presented in Table 7.27. The proposed work is performed on 

the MATLAB R2013a. In this work, comparison data sets were generated by using 

quaternion vector based method from chapter 4.  

Table 7.27 Five different positions and joint variables 

Positions 
 Joint angles 

1  2  3  4  5  

P1( -76.09,  54.36,  -61.94 ) 84.559 77.518 101.74 30.616 38.697 

P2( 89.69,   192.55, 90.87, ) 84.791 97.25 130.44 50.771 36.428 

P3( -4.24,   94.08, 97.55 ) 18.384 78.688 35.234 77.708 34.889 

P4(29.10,154.02, -31.52) 104.43 115.47 124.11 7.3372 33.774 

P5(-184.33, -43.21, 8.27) 39.177 107.13 97.052 65.672 15.374 

Table 7.7 gives some of the desired data for the position of joints determined through 

analytical solution (Quaternion), which will further be used to calculate the difference 

between the adopted algorithms and analytical solution of inverse kinematic. Table 7.28 

represents the comparative results of optimization algorithms for the evaluation of 

inverse kinematic fitness function and joint variables.  Conducted experiment doesn't 

follow any special tuning of associated parameters of all algorithms. It is observed from 

Table 7.28 TLBO performing well as compared to GA on the basis of fitness 

evaluations for position 4.  In case of the Euclidean distance norm the minimum value 

of the considered fitness functions is 0, the obtained result is accepted if it varies from 



     

  246 

 

the optimum value by less than 0.01 and all algorithms are near to the stated value. 

Hence it can be understood from the obtained results that the proposed solution scheme 

performing quite well for metaheuristic algorithms.  

Table 7.28 Five different positions and joint variables through adopted algorithm 

Table 7.29 Computational time for inverse kinematic evaluations 

SN Method Computational time 

1 TLBO 15.671s 

2 GA 7.932s 

3 GWO 3.45s 

4 PSO 16.88s 

5 CIBO 29.41s 

Positions 
PSO Joint angles 

Function Value 

1  2  3  4  5  

P1 21.12 71.20 54.94 2.55 90.65 0.037 

P2 57.37 9.69 119.60 23.77 95.81 0 

P3 3.62 93.48 67.93 28.40 103.78 -120.23 

P4 65.33 95.23 70.63 33.66 104.04 -119.99 

P5 74.64 14.38 29.40 15.68 104.61 0 

Positions 
GWO Joint angles 

Function Value 

1  2  3  4  5  

P1 47.55 35.60 52.18 55.73 92.99 0.019 

P2 6.81 41.17 0.65 40.87 90.88 -314.89 

P3 50.84 39.36 79.09 36.34 97.01 10.36 

P4 5.03 66.25 115.93 64.46 101.52 0.88 

P5 13.83 39.68 86.01 26.95 90.64 0.0003 

Positions 
TLBO Joint angles 

Function Value 

1  2  3  4  5  

P1 86.59 72.16 72.16 40.89 30.45 0 

P2 83.87 69.89 69.89 39.60 30.76 0 

P3 84.51 70.42 70.42 39.90 30.68 0 

P4 85.56 71.30 71.30 40.40 30.53 0.0137 

P5 87.81 73.18 73.18 41.46 30.36 0 

Positions 
GA Joint angles 

Function Value 

1  2  3  4  5  

P1 60.61 49.50 58.38 62.28 27.90 0 

P2 88.29 34.09 14.43 15.24 51.73 0 

P3 55.00 49.27 63.94 47.84 33.63 0 

P4 72.59 22.68 68.29 85.88 27.04 0 

P5 25.66 70.58 31.34 66.80 52.88 0 

Positions 
CIBO Joint angles 

Function Value 
1  2  3  4  5  

P1 60.15 98.96 65.99 -14.23 8.06 10.78 

P2 35.42 97.27 56.32 -1.28 9.76 -41.03 

P3 48.63 96.01 66.61 22.52 4.39 0.0012 

P4 29.81 92.70 1.97 -10.17 1.15 0.931 

P5 71.30 94.78 63.84 13.72 20.86 0 
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Figure 7.42 through 7.51 represents the best function value and corresponding joint 

variables for all positions.  These figures give the performance of the adopted 

algorithms for the solution of inverse kinematic problem of 5-dof manipulator. The 

convergence of the fitness function goes to zero error for both adopted algorithm but in 

case of TLBO it gives 0.013 errors for position 4. Therefore it can be say that the TLBO 

is performing less accurate as compared to GA. Figure 7.47 through 7.51 gives the 

performance of the GA for the adopted model and histograms gives the value in radians 

which is converted into degree and presented in Table 7.28.  Using GA MATLAB 

toolbox the program was testes and the results converge to zero displacement error and 

corresponding joint variable for single run is shown in Figure 7.45 through 7.49. In this 

figure the adopted algorithm is producing multiple solutions for the single position but 

as per give termination criteria and among those generated results minimum value of 

joint angle has taken for the comparison. It has been observe that the convergence of the 

solution for GA is taking less computation time as compared to algorithms. 

Computational times for all adopted algorithms are given in Table 7.29.  Overall 

computation time for the calculation of inverse kinematic solution is 15.671seconds for 

TLBO which is more than other algorithms, while the GA is taking only 7.932 second. 

Therefore it can also be compared on the basis of computational cost that quaternion 

algebra is taking slowest time among other adopted method.  

 

 

Figure 7.42 Function value and joint variables for P1 

 

 

Figure 7.43 Function value and joint variables for P2 
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Figure 7.44 Function value and joint variables for P3 

 

Figure 7.45 Function value and joint variables for P4 

 

Figure 7.46 Function value and joint variables for P5 

 

 

 

Figure 7.47 Function value and joint variables for P1 
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Figure 7.48 Function value and joint variables for P2 

 

 

Figure 7.49 Function value and joint variables for P3 

 

 

Figure 7.50 Function value and joint variables for P4 

 

 

Figure 7.51 Function value and joint variables for P5 
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7.4.3 Inverse kinematic solution of 6-dof PUMA manipulator 

In this section, type C PUMA 560 manipulator is used for the inverse kinematic 

analysis. Simulations studies are carried out to check the performance and efficiency of 

proposed GWO, PSO, CIBO, TLBO algorithm and comparison with the GA to solve 

inverse kinematic problem of PUMA manipulator. Five different positions of end 

effector have been considered for inverse kinematics evaluation as indicated in Table 

7.30. The proposed work is implemented on the MATLAB R2013a. Table 7.14 

provides sample of the target data for the position of end effector determined through 

analytical solution (Quaternion), which is used to determine the difference between the 

adopted algorithms and analytical solution of inverse kinematic.  

Table 7.31 denotes the comparative results of GWO, PSO, TLBO, CIBO and GA 

algorithms for the evaluation of inverse kinematic fitness function and joint variables. 

The parameters of all adopted algorithms are used without any specialized tunings 

similar to previous work.  The objective function formulations are presented in chapter 

6 which is based on the position and orientation based error. The minimum functional 

value of the distant based norm is 0 while in this thesis the minimum functional value of 

objective function is allowed to the limit of 0.01 for all algorithms. It has been observed 

from the comparison Table 7.31; all adopted algorithms are performing precisely to 

achieve minimum functional value. The overall performance to get minimum function 

value for the objective function using GA is yielding better results as compared to other 

adopted algorithm.  

It is also observed from Table 7.31 GWO performing well as compared to other 

adopted algorithms on the basis of fitness evaluations for positions P1, P2, P3 and P5 

while TLBO is performing better in case of P4. Hence it can be understood from the 

obtained results that the proposed solution scheme performing quite well for 

metaheuristic algorithms.  

Table 7.30 Five different positions and joint variables through quaternion 

Positions 

(X, Y, Z) 

Joint angles 

1  2  3  4  5  6  

 

P1(12.46, 47.59, 104.75) 
-43.90 -211.96 205.28 -91.55 67.26 -20.30 

 

P2(-24.64, -62.39,  91.87) 
23.41 -161.7 31.48 101.09 10.56 201.94 

 

P3-21.61,  9.30, 118.00) 
72.06 -183.33 -22.34 15.56 -49.21 180.11 

 

P4(-12.16,  8.83, 126.55) 
-16.32 -206.70 90.38 -49.86 72.13 44.86 

 

P5(-50.31, 18.71,  103.27) 
103.88 -129.00 26.92 99.86 61.08 11.86 
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Table 7.31 Comparative results for joint variable and function value 

Figure 7.52 through 7.76 represents the best function value and corresponding joint 

variables for all considered positions.  Visualization of the fitness function using 

different domains of the variables can be found in the left side (first column) of the 

Figure 7.52 through 7.76.  Surf plot function is used in an area of given range of 

variables, where focus or impression is given on the XY plane depicting the global 

optimum range from [-50, 50].  For all surf plot in the left side of the figure represents 

the different properties of the considered fitness function. When looking at the inner 

surface area, the fitness function looks different, wherein many small valleys and peaks 

are visible. These peaks and valleys increases when the considered problem is higher 

dimensional.  Moreover zooming of the surf plot can yield the desired location of the 

Positions 

(X, Y, Z) 

Joint angles by PSO Function 

Value 
1  2  3  4  5  6  

P1 14.34 -0.67 88.01 100.15 91.68 214.14 -1.52 

P2 -82.25 -12.77 109.37 21.89 -11.47 -102.69 -10.82 

P3 -151.10 -179.99 87.30 -99.23 74.24 230.05 -11.8639 

P4 -51.41 2.10 87.30 81.52 73.22 87.21 -2.77 

P5 32.51 -0.01 -69.32 1.03 29.46 77.48 155.2629 

Positions 
Joint angles by GWO Function 

Value 
1  2  3  4  5  6  

P1 -34.40 -10.04 97.10 109.09 -56.42 182.34 -217.09 

P2 -21.60 -3.034 90.8145 66.48 -90.34 156.14 -244.5808 

P3 -64.53 0.004 -0.97 14.36 22.50 -81.33 -257.8689 

P4 -57.03 -179.43 86.124 71.54 9.82 40.15 -96.025 

P5 -95.16 -2.595 90.05 61.59 43.10 67.71 -219.9465 

Positions 
Joint angles by TLBO Function 

Value 
1  2  3  4  5  6  

P1 -107.65 -180.83 -0.83 30.59 -51.72 81.45 -0.66 

P2 -14.03 -101.84 78.160 -135.75 94.58 234.16 -186.667 

P3 -36.48 -120.78 59.21 110.00 -45.21 20.89 -228.959 

P4 -12.64 -100.66 79.33 74.55 83.19 7.06 -159.472 

P5 -108.06 -181.18 -1.179 101.09 -44.56 241.16 -2.22257 

Positions 
Joint angles by GA Function 

Value 
1  2  3  4  5  6  

P1 15.93 25.50 37.59 -61.29 44.87 -230.24 -1.43 

P2 -21.81 13.98 11.91 99.89 71.56 55.48 -158.33 

P3 -26.98 15.82 16.61 39.67 86.42 62.84 -1.9668 

P4 16.33 19.05 22.16 46.82 16.76 105.68 -68.7128 

P5 -83.19 2.70 85.54 57.19 37.24 -109.58 -2.3067 

Positions 
Joint angles by CIBO Function 

Value 1  2  3  4  5  6  

P1 21.89 6.95 91.69 30.54 -84.50 133.49 -0.52 

P2 -65.36 -111.21 19.85 37.19 99.15 222.56 -7.12 

P3 -131.63 -169.99 79.89 150.36 102.35 64.84 -9.32 

P4 -35.56 10.12 63.78 46.87 1.43 -125.14 -2.03 

P5 83.36 15.091 -71.56 94.25 21.54 46.79 10.15 
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optimum point within the small search area. In order to analyses the convergence 

behaviors of the adopted algorithms search history and corresponding joint angles of the 

manipulator is presented in Figures 7.52 through 7.76 in second columns. In this work 

three search agents for GWO has been considered to find out the optimum value of 

fitness function, similarly  three sets of learner for TLBO, three particle for PSO and 

three genes considered for GA. It has been observed that the all considered search 

agents or individuals for adopted algorithm having ability of exploration and 

exploitation of best fitness evaluations. From Figure 7.65, TLBO is giving minimum of 

fitness function for the position P4 as compared to other adopted algorithms while for 

rest of the considered positions GWO is performing better.  

The convergence of the fitness function goes less than zero error for all adopted 

algorithm but in case of PSO it gives 155.2629 errors for position P5. Therefore it can 

be say that the PSO is performing less accurate as compared to other algorithms. Figure 

7.67 through 7.71 gives the performance of the GA for the adopted model and 

histograms gives the value in radians which is converted into degree and presented in 

Table 7.31.  Using GA MATLAB toolbox the program was tested and the results 

converge to zero displacement error and corresponding joint variable for single run is 

shown in Figure 7.67 through 7.71. In this figure the adopted algorithm is producing 

multiple solutions for the single position but as per give termination criteria and among 

those generated results minimum value of joint angle has taken for the comparison.   
 

 

Figure 7.52 PSO Function value and joint variables for P1 
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Figure 7.53 PSO Function value and joint variables for P2 

 

 

Figure 7.54 PSO Function value and joint variables for P3 

 

Figure 7.55 PSO Function value and joint variables for P4 
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Figure 7.56 PSO Function value and joint variables for P5 

 

 

 

Figure 7.57 GWO Function value and joint variables for P1 

 

 

Figure 7.58 GWO Function value and joint variables for P2 
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Figure 7.59 GWO Function value and joint variables for P3 

 

 

Figure 7.60 GWO Function value and joint variables for P4 

 

 

Figure 7.61 GWO Function value and joint variables for P5 
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Figure 7.62 TLBO Function value and joint variables for P1 

 

 
 

Figure 7.63 TLBO Function value and joint variables for P2 

 

 

 
 

 

Figure 7.64 TLBO Function value and joint variables for P3 

(a) 
(b) 

(a) 
(b) 

(b) 
(a) 
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Figure 7.65 TLBO Function value and joint variables for P4 

 
 

 

Figure 7.66 TLBO Function value and joint variables for P5 

 

 

Figure 7.67 GA Function value and joint variables for P1 

 

 

Figure 7.68 GAFunction value and joint variables for P2 

 

(a) 
(b) 

(b) (a) 
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Figure 7.69 GAFunction value and joint variables for P3 

 

 

Figure 7.70 GAFunction value and joint variables for P4 

 

 

Figure 7.71 GAFunction value and joint variables for P5 

 

 

 

Figure 7.72 CIBO Function value and joint variables for P1 
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Figure 7.73 CIBO Function value and joint variables for P2 

 

Figure 7.74 CIBO Function value and joint variables for P3 

 

Figure 7.75 CIBO Function value and joint variables for P4 
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Figure 7.76 CIBO Function value and joint variables for P5 

Finally it has been observe that the convergence of the solution for GA is taking less 

computation time as compared to GWO, PSO, and TLBO as given in Table 7.32. 

Overall computation time for the calculation of inverse kinematic solution is 31.864 

seconds for PSO which is more than other algorithms, while the GA is taking only 

5.896 seconds. Therefore it can also be compared on the basis of computational cost.  

Table 7.32 Computational time for inverse kinematic evaluations 

 

 

 

 

In order to obtain desired joint angles for adopted manipulator the actual solution using 

quaternion algebra is presented in Figure 7.77 through 7.81. The comparison of all 

algorithms has been made on the basis of best joint angle found by the adopted 

algorithms. In case of position P1, P2 and P4 genetic algorithm is closer to the standard 

solution which is highlighted in pink line in Figure 7.77-7.78 and Figure 7.80, While in 

case of P5, GA, PSO and TLBO is performing similar for all joint variables.  
 

SN Method Computational time 

1 GWO 25.821s 

2 PSO 31.864s 

3 TLBO 29.547s 

4 GA 5.896s 

5 CIBO 30.568s 
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Figure 7.77 Comparison of joint variables for position 1 

 

Figure 7.78 Comparison of joint variables for position 2 



     

  262 

 

 
 

Figure 7.79 Comparison of joint variables for position 3 

 

Figure 7.80 Comparison of joint variables for position 4 
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Figure 7.81 Comparison of joint variables for position 5 

It has been also described that the adopted algorithm is much appropriate for 

constrained problems. In order to evaluate the effectiveness of the adopted techniques 

used, the obtained results are compared with standard quaternion solution.  In the 

results section Table 7.31 shows comparison with the results obtained through different 

algorithms. In this approach forward and inverse kinematic model of the PUMA 

manipulator is used for generating the objective function for GWO, PSO, TLBO and 

GA. All adopted algorithms gives faster convergence rate and improves the problem of 

trapping in local minima. Future research will be on the hybridization of GWO, PSO, 

TLBO with ANN, tuning parameter, epoch numbers can be used to refine optimum 

solution. 

7.4.4 Inverse kinematic solution of 6-dof ABB IRB-1400  manipulator 

In this section, type A2 ABB IRB-1400 manipulator is adopted for the inverse 

kinematic analysis. The material description is provided in chapter 3 with kinematic 

parameters and joint variables. The mathematical modelling of forward and inverse 

kinematic is given in chapter 4. Using the mathematical equations of kinematics five 

different positions and joint variables are calculated for the comparative experiments. 

Five different positions and joint variables are presented in Table 7.33. Simulations of 

the proposed model and their kinematic relationship are performed to check the quality 

and efficiency of the solution using all adopted algorithms. The detail discussions of the 

inverse kinematic solution scheme and application of the optimization algorithms are 

presented in chapter 6. Based on the application of optimization algorithm and objective 

function formulations the comparison has been made with the quaternion algebra 

kinematics. The different optimization algorithms for the comparison are considered as 
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follows, (a) GWO, (b) PSO, (c) TLBO, (d) CIBO and (e) GA. The proposed work and 

adopted algorithms are performed in MATLAB.  

Table 7.17 gives the sample of the target data for the position of end effector 

determined through analytical solution (Quaternion), which is further used to determine 

the difference between the adopted algorithms and analytical solution of inverse 

kinematic.  

Table 7.33 Five different positions and joint variables through quaternion 
 

 

Table 7.34 presents the comparative results of all adopted algorithms for the evaluation 

of inverse kinematic using objective function and constraints. Similar to the previous 

work, parameters for all adopted algorithms have chosen randomly. The development 

of the objective function is based on the Euclidean distant norm which is having 

minimum of function value 0. Moreover, in this work the minimum functional value is 

considered as 0.01 for all algorithms. The number of the dimension depends on the joint 

variables. Hence six search agents or wolves have been considered for the GWO based 

solution. Similarly six dimensions for PSO, six sets of learners for TLBO and six genes 

for GA are considered as a candidate solution. It has been observed that the all 

considered search agents or individuals for adopted algorithm having ability of 

exploration and exploitation of best fitness evaluations. 

Table 7.34 represents the comparative results of all algorithms. The results obtained 

through the GA are better than all other algorithms while TLBO and GWO performs 

equally up to certain limit. Performances of the PSO and CIBO are similar in case of 

function evaluation. Joint variables for position P1 using PSO is near to the 

conventional based solution. On the other hand, for positions P2, P3 and P4 genetic 

algorithm is giving better solution. Figure 7.82 through Figure 7.86 indicates the overall 

comparison of all adopted algorithms with quaternion algebra based solutions. From 

Figure 7.82 through Figure 7.86 it can be understood that the implementation of the 

optimization algorithms are fruitful. Therefore, to avoid the mathematical complexities 

Positions 

(X, Y, Z) 

Joint angles 

1  2  3  4  5  6  

 

P1(12.46, 47.59, 104.75) 58.30 3.39 39.68 88.30 72.25 155.40 

 

P2(-24.64, -62.39,  91.87) 53.15 20.04 -56.63 81.88 14.08 165.95 

 

P3-21.61,  9.30, 118.00) 86.30 45.39 12.67 50.40 80.06 41.84 

 

P4(-12.16,  8.83, 126.55) 87.12 38.63 9.35 44.18 11.71 264.81 

 

P5(-50.31, 18.71,  103.27) 98.91 49.33 42.92 85.52 56.51 36.99 
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of inverse kinematic solution optimization algorithms can be applied. In this work the 

adopted algorithm is producing multiple solutions for the single position but as per give 

termination criteria and among those generated results minimum value of joint angle 

has taken for the comparison.  

Table 7.34 Comparative results for joint variable and function value 

 

Positions 

(X, Y, Z) 

Joint angles by PSO Function 

Value 
1  2  3  4  5  6  

P1 49.96 -4.12 40.22 90.25 72.66 149.78 -11.96 

P2 50.23 18.54 -56.55 80.65 -104.35 102.85 0.0152 

P3 86.85 -90.21 -12.99 49.47 90.25 40.25 -294.35 

P4 87.36 -40.15 -10.51 -45.67 10.99 243.82 0.0017 

P5 100.35 50.89 -65.68 -26.85 125.86 10.61 0.1950 

Positions 
Joint angles by GWO Function 

Value 
1  2  3  4  5  6  

P1 48.65 35.96 14.95 -58.99 -1.96 102.65 0 

P2 98.45 44.62 -91.56 -110.54 201.68 -14.63 0 

P3 88.65 -45.65 65.85 1.29 -111.48 89.56 -316.856 

P4 102.65 -90.36 49.58 61.25 91.39 88.24 0 

P5 73.52 64.25 -34.95 -72.52 94.68 66.45 0 

Positions 
Joint angles by TLBO Function 

Value 
1  2  3  4  5  6  

P1 91.68 55.36 -102.51 31.84 59.51 15.52 0 

P2 -14.57 165.85 -97.34 22.86 19.47 -28.36 0 

P3 94.45 -53.35 -23.84 201.84 -90.47 1.95 -296.47 

P4 104.35 -52.86 20.35 65.32 14.69 44.58 0.0025 

P5 99.21 149.57 -45.67 16.57 19.06 0.25 0 

Positions 
Joint angles by GA Function 

Value 
1  2  3  4  5  6  

P1 59.21 -4.69 40.25 102.65 65.85 100.35 0 

P2 50.36 20.99 -45.56 80.68 102.63 30.51 0 

P3 99.58 -14.65 -23.68 71.16 -41.69 32.85 0 

P4 55.68 24.36 16.52 -63.78 0.10 36.52 0 

P5 99.51 50.36 41.35 102.96 -61.52 -40.63 0 

Positions 
Joint angles by CIBO Function 

Value 1  2  3  4  5  6  

P1 35.56 14.23 40.41 22.96 90.30 -150.26 0.0016 

P2 50.26 66.81 -20.14 37.61 55.14 100.52 -102.36 

P3 96.58 50.24 64.81 33.55 -45.09 -12.99 0.0036 

P4 69.58 -10.25 -155.62 23.57 61.00 29.85 0.856 

P5 57.21 -21.86 44.36 -34.51 85.26 9.53 -102.96 
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Figure 7.82 Comparison of joint variables for position 1 

 

Figure 7.83 Comparison of joint variables for position 2 
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Figure 7.84 Comparison of joint variables for position 3 

 

Figure 7.85 Comparison of joint variables for position 4 
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Figure 7.86 Comparison of joint variables for position 5 

7.4.5 Inverse kinematic solution of 5-dof ASEA IRb-6 manipulator 

In this section, type A1 ASEA IRb-6 manipulator is used for the inverse kinematic 

analysis. The joint variables and kinematic parameters for the adopted robot 

manipulator are described in chapter 3. In chapter 4 thorough description and 

mathematical modelling of forward and inverse kinematics of the selected manipulator 

is presented. Using the kinematic formulations five different positions of the end 

effector and their joint variables are calculated for the comparative evaluations of the 

adopted algorithms. The joint variables and end effector coordinates for the selected 

manipulator is presented in Table 7.35.  

Table 7.35 Five different positions and joint variables 

Positions 
 Joint angles 

1  2  3  4  5  

P1( 595.72, -303.90, -294.64) 
   99.6981  85.4732  -135.6945  -143.2309  109.1581 

P2(78.56, -334.93, 71.80) 
  310.6737    59.8666  140.0265   27.9008    39.4117 

P3(565.94,  -293.77, 43.18) 
  329.3916    81.7060  144.4626   -82.6927   333.3707 

P4(510.20, -572.33,  -611.03) 
  177.9217    95.9999  -142.7337  67.0121   283.7942 

P5(109.98, -242.10, -191.05) 
  157.1849    95.2089  143.8745  -219.1774    32.5522 

To check the quality and efficiency of the adopted algorithms simulations and 

comparisons have been made. The thorough description of the inverse kinematic 

solution scheme and application of the adopted algorithms are discussed in chapter 6. 

The formulations for the objective function for the inverse kinematic evaluations are 
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based on the position and orientation error of the manipulator. The proposed work and 

adopted algorithms are performed in MATLAB. Some samples of the joint variables 

and end effector coordinates using MATLAB program is presented in Table 7.20. The 

considered optimization algorithms are GWO, TLBO, CIBO, GA and PSO which is 

further compared with the quaternion algebra based inverse kinematic solutions. The 

comparative results for function evaluations and joint variables are given in Table 7.36 

for all adopted algorithms.  

Table 7.36 Comparative results for joint variable and function value 

Positions 
PSO Joint angles 

Function Value 

1  2  3  4  5  

P1 100.23 -26.85 -130.25 -14.26 91.26 0.0023 

P2 256.35 -60.53 114.52 30.25 24.63 -10.25 

P3 211.36 56.24 -45.85 -0.425 74.35 24.63 

P4 52.96 112.54 46.98 111.41 -81.21 0.096 

P5 34.68 12.48 6.69 -90.73 30.54 0.0006 

Positions 
GWO Joint angles 

Function Value 

1  2  3  4  5  

P1 100.36 26.95 45.95 10.43 109.66 0.0024 

P2 270.15 60.03 -114.68 -11.58 40.97 -100.67 

P3 -96.24 55.18 88.65 67.16 -251.63 0.0048 

P4 6.15 67.24 -36.74 -51.86 280.57 0 

P5 66.54 100.29 11.96 49.89 73.54 0 

Positions 
TLBO Joint angles 

Function Value 

1  2  3  4  5  

P1 52.67 69.89 108.16 9.82 -47.65 0 

P2 31.93 14.51 107.19 5.30 57.69 0 

P3 29.56 7.72 108.35 18.33 57.63 0 

P4 42.82 24.48 106.28 3.22 45.44 -248.36 

P5 36.57 49.80 107.41 15.26 -53.72 0.0025 

Positions 
GA Joint angles 

Function Value 

1  2  3  4  5  

P1 57.20 121.10 68.84 -12.10 128.83 0 

P2 143.86 150.6 91.36 -30.89 14.39 0 

P3 174.22 90.48 128.31 31.85 185.97 0 

P4 170.85 35.33 54.50 -43.94 87.04 0 

P5 23.35 88.18 69.67 -25.62 16.12 0 

Positions 
CIBO Joint angles 

Function Value 
1  2  3  4  5  

P1 35.76 62.85 108.84 3.55 -16.48 0.0074 

P2 53.25 50.55 105.46 6.73 20.31 10.63 

P3 39.13 45.61 106.45 5.52 -56.41 0.0042 

P4 32.25 37.70 108.66 18.49 -62.37 0 

P5 39.79 47.63 106.6 6.84 -7.52 0 
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The parameters for tuning of the optimization algorithms are chosen randomly which is 

similar to the previous work. The objective function is based on the distance norm 

having minimum function value 0. Moreover, in this work the minimum functional 

value is considered as 0.01 for all algorithms. The number of particle for swarm 

optimization or solution dimension is depends on the number of variables of the 

objective function. Therefore, in this work number of dimension is five for all 

algorithms. The ability of exploration and exploitation for all algorithms is better as 

compared to conventional optimization techniques. The metaheuristic or nature based 

optimization algorithms having ability to avoid local optimum points. Therefore, the 

adopted algorithms having strong exploration and exploitation ability for the searching 

of global optimum point.  

The evaluations of the function value and joint variables are given in Table 7.36. The 

functional values of GA for all positons are 0, which is better than all other algorithms. 

The computational cost for the GA is less as compared to other optimization based 

algorithms. From Figure 7.87 through 7.91, the joint variables obtained through GWO 

for position P2, P4 and P5 are better than all other algorithm. On the hand, for position 

P1 and P3, TLBO is yielding better result as compared to GWO as shown in Figure 

7.87 and Figure 7.89. The overall performance of TLBO and GA is better than other 

adopted algorithm. Therefore, the mathematical complexities of higher order 

polynomial equations can be avoided using the optimization based solutions. Moreover, 

all adopted algorithms having ability to solve inverse kinematic problem. Although the 

adopted algorithm produces number of solution for the problem but eventually the 

termination of algorithm yields optimum result of inverse kinematic.  

 

 

Figure 7.87 Comparison of joint variables for position 1 
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Figure 7.88 Comparison of joint variables for position 2 

 

Figure 7.89 Comparison of joint variables for position 3 
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Figure 7.90 Comparison of joint variables for position 4 

 

Figure 7.91 Comparison of joint variables for position 5 

7.4.6 Inverse kinematic solution of 6-dof STAUBLI RX160 L manipulator 

In this section, type A2 6-dof STAUBLI RX160 L manipulator is used for the inverse 

kinematic analysis. The model description and associated kinematic parameters are 

discussed in chapter 3. On the other hand, a derivation of the inverse kinematic problem 

is presented in chapter 4. The forward and inverse kinematic formulations are used to 

generate the sample data for the comparison and evaluation of the adopted algorithm as 

explained earlier. Using the kinematic formulations from chapter 4, five different 

positions are considered for the inverse kinematic solution using optimization 

algorithm. The generated data samples for five different positions are presented in 

Table 7.37.  
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Table 7.37 Five different positions and joint variables through quaternion 
 

 

 

 

 

 

 

 

This generated data is the basis for the simulation and comparison of the adopted 

methodologies. Moreover, the application of the optimization algorithm for the solution 

of inverse kinematic problem is discussed in chapter 6. The preparation of the fitness 

function is also described in chapter 6 along with the mathematical formulations. The 

fitness function (objective function) is based on the distance norm with the imposed 

joint variables as constraints to solve the inverse kinematic problem. Overall work is 

performed in the MATLAB environment. Flexibility of the objective function provides 

better opportunity to adopt various optimization algorithms to solve the inverse 

kinematic problem. In this work, five different optimization algorithms are considered 

namely GWO, PSO, TLBO, GA and CIBO. The adopted algorithm is later compared 

with the conventional based solution of the inverse kinematic problem. The 

comparative results are produced in Table 7.38.  

The tuning parameters for all adopted optimization algorithms are taken randomly, 

there no specific tuning of the parameters. For example in PSO it is require to set 

acceleration constant, inertia weight and constriction factor. Similarly for all other 

algorithms possess some parameter which directly affects the performance. The number 

of joint variable is six in this case therefore the selected dimension for the optimization 

algorithm is six. The adopted algorithms have the ability to avoid the local optimum or 

near optimal solutions. Moreover, the exploration and exploitation of algorithms play 

crucial role to get the global optimal solution. The overall performance and quality of 

the results are presented in chapter 8. The comparative results and functional values are 

given in Table 7.38. The objective function values are zero for GA and TLBO 

algorithms for all considered positions. Therefore the convergence of the GA and 

TLBO is better than other adopted algorithms. 

 

 

Positions 

(X, Y, Z) 

Joint angles 

1  2  3  4  5  6  

 

P1( 5.94, -6.49, 34.29)   109.99    58.20 30.99      164.40   105.36   190.88 

 

P2(-16.64, -9.13, 17.82)    57.18     7.10   141.76     219.30   115.70   160.32 

 

P3(-1.53, -3.77, 28.49)   109.33    41.03 109.51     182.94   112.05   109.37 

 

P4(-0.14, -4.49, 33.53)   126.02    32.70 67.10      172.89   113.67   219.84 

 

P5(4.38, -64.92, 37.51)   136.54    47.79 94.15       14.06   110.33   216.84 
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Table 7.38 Comparative results for joint variable and function value 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From Figure 7.92 through Figure 7.96 gives the overall comparison for all positions 

with the quaternion based solution. For position P1 GA is yielding better results as 

compared to other algorithms. On the other hand, GWO, TLBO and GA are performing 

better than PSO and CIBO for position P2. For position P3 the performance of CIBO is 

similar to GA and TLBO. For positions P4 and P5, GA and TLBO perform equally. All 

adopted algorithms are giving minimum function values with optimized joint variables. 

Therefore, optimization algorithms are strong tool to solve inverse kinematic problem. 

Positions 

(X, Y, Z) 

Joint angles by PSO 
Function Value 

1  2  3  4  5  6  

P1 50.50 136.59 101.21 29.5 31.67 111.06 0.0078 

P2 156.97 19.59 106.62 64.77 178.37 108.57 10.36 

P3 146.38 71.12 26.13 97.56 183.49 105.96 -215.63 

P4 139.06 14.52 44.78 23.30 10.29 115.65 0 

P5 29.09 55.46 13.16 126.70 145.79 108.57 0 

Positions 
Joint angles by GWO 

Function Value 

1  2  3  4  5  6  

P1 1.12 88.27 14.97 169.35 114.04 155.89 0 

P2 126.5 13.83 85.62 51.54 119.15 36.96 0 

P3 124.0 52.19 63.36 64.60 105.17 53.69 0 

P4 20.35 43.77 87.72 261.65 115.42 52.57 0 

P5 45.39 130.82 20.15 226.51 116.36 66.97 0 

Positions 
Joint angles by TLBO 

Function Value 
1  2  3  4  5  6  

P1 98.34 55.16 134.24 118.62 119.71 98.34 0.0058 

P2 35.32 5.11 196.6 106.8 112.32 35.32 0.00034 

P3 96.79 11.28 23.95 107.40 131.63 96.79 -211.63 

P4 61.1 75.20 129.40 106.80 136.74 61.19 0 

P5 17.74 71.39 110.98 112.37 112.70 17.74 0 

Positions 
Joint angles by GA 

Function Value 
1  2  3  4  5  6  

P1 60.03 6.08 31.83 108.07 242.29 60.03 0 

P2 75.42 11.79 205.14 105.14 259.89 75.42 0 

P3 94.35 35.76 225.22 118.75 66.43 94.35 0 

P4 111.2 70.00 134.37 112.21 227.22 111.2 0 

P5 87.71 107.92 179.51 114.49 58.58 87.71 0 

Positions 
Joint angles by CIBO 

Function Value 
1  2  3  4  5  6  

P1 32.82 148.12 231.26 107.95 9.62 32.82 -20.36 

P2 75.79 78.73 143.81 118.75 250.04 75.79 0.0086 

P3 82.27 106.23 16.71 118.01 242.53 82.27 0 

P4 104.25 1.41 140.99 117.23 185.74 104.25 0 

P5 35.36 145.29 178.50 112.06 52.86 35.36 -315.36 
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All adopted algorithms produces multiple solutions for the inverse kinematic problem 

but when the algorithm reaches to the maximum iteration the joint variable are 

optimized with functional value.  

 

 

Figure 7.92 Comparison of joint variables for position 1 

 

Figure 7.93 Comparison of joint variables for position 2 
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Figure 7.94 Comparison of joint variables for position 3 

 

Figure 7.95 Comparison of joint variables for position 4 
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Figure 7.96 Comparison of joint variables for position 5 

7.5 Discussions 

Inverse kinematic solutions of different configurations of industrial robot manipulators 

are presented in this chapter. The detail plan of the materials and methods are presented 

in Table 3.10. Conventional tools such as quaternion algebra as well as homogeneous 

transformation methods are used to determine the inverse kinematic solution of the 

adopted manipulators. In homogenous transformation method, it is required to store all 

orientation vector or transformation matrices of each coordinate system with respect to 

previous one from the beginning. Whereas quaternions of each coordinate system are 

calculated from the unit line vector. The total space required for the quaternion algebra 

is eight while homogeneous matrix method takes 12 memory locations. The space 

requirement affects the overall computational cost due to the cost of attracting an 

operand from the memory surpasses the cost of execution a basic mathematical 

operations.  

For the calculation of computational cost the system, Intel Core i5 with 4 GB RAM and 

the 3.10 GHz processor was used. On the other hand, comparison has been made on the 

basis of the number of solutions for all adopted manipulators. The number of solution 

for all adopted manipulator is presented in Table 7.39. An overall result of quaternion 

algebra and homogeneous transformation based approach towards the solution of 

inverse kinematic problem is presented in Table 7.39.  
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Table 7.39 Comparative analysis of conventional tools 

The intelligence based approaches are quite convenient tool for the solution of inverse 

kinematic problem due to its flexibility to adapt non-linear functions. The detail 

description of the adopted neural network models and their application towards the 

solution of inverse kinematic problem has been discussed in chapter 5. The obtained 

results using the intelligence based approaches are presented in Table 7.40. The 

comparison has been made on the basis of number of solutions as well as computational 

time. An intelligent based approach gives multiple solutions as compared to 

optimization based approach.  

The overall computation time for the determination of inverse kinematic solution is 

more than the conventional tool. An intelligent based method requires the higher level 

of programming which makes maximum use of memory locations. A concise result of 

the intelligence based approaches ae presented in Table 7.40.  

 

 

 

 

Methods Adopted On Outcomes Remarks 

Conventional 

approaches 

1. HT 

2. QA 

Robots Structures Types Joint variables 
No. of 

Solutions 

MO CT 

(Seconds) + * 

3-dof 

revolute 

Rigid 

(R-R-R) 
Planar 321 and,   HT: 2 

QA: 2 

HT:72 

QA:69 

HT:114 

QA:105 

HT:0.36 

QA:0.11 

SCARA 

(4-dof) 

Flexible 

(R-R-P-R) 
SCARA 4321 andd,   Multiple 

solutions 

HT:108 

QA:91 

HT:168 

QA:144 

HT:0.37 

QA:0.19 

Pioneer 

arm2 

(5-dof) 

Rigid 

(R-R-R-R-

R) 

Spatial 54321 and,   Multiple 

solutions 

HT:144 

QA:113 

HT:222 

QA:183 

HT:0.40 

QA:0.29 

PUMA 560 

(6-dof) 

Rigid 

(R-R-R-R-

R-R) 

Spatial 

Type-C 
6

54321

and

,




 Multiple 

solutions 

HT:180 

QA:135 

HT:276 

QA:222 

HT:0.49 

QA:0.33 

 

ABB IRb-

1400(6-dof) 

Rigid 

(R-R-R-R-

R-R) 

Spatial 

Type-A1 
6

54321

and

,




 Multiple 

solutions 

HT:180 

QA:135 

HT:276 

QA:222 

HT:0.40 

QA:0.31 

 

ASEA IRb6 

(5-dof) 

Rigid 

(R-R-R-R-

R-R) 

Spatial 

Type-A2 54321 and,   Multiple 

solutions 

HT:144 

QA:113 

HT:222 

QA:183 

HT:0.39 

QA:0.27 

STÄUBLI  

RX160 L 

(6-dof) 

 

 

 

Rigid 

(R-R-R-R-

R-R) 

Spatial 

Type-B2 
6

54321

and

,




 Multiple 

solutions 

HT:180 

QA:135 

HT:276 

QA:222 

HT:0.446 

QA:0.318 
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Table 7.40 Comparative analysis of intelligent approaches 

Methods Adopted On Outcomes Remarks 

Intelligence 

approaches 

 

1. MLPBP 

2. ANFIS 

3. MLPPSO 

4. MLPGWO 

5. PMLTLB

O 

6. MLPGA 

7. MLPCIBO 

Robots Structures Types Joint variables 
No. of 

Solutions 

CT 

(Seconds) 

3-dof 

revolute 

Rigid 

(R-R-R) 
Planar 321 and,   

Multiple 

solutions 

 

1. MLP:4.5 

2. PPN:3.9 

3. Pi-Sigma:3.1 

SCARA 

(4-dof) 

Flexible 

(R-R-P-

R) 

SCARA 4321 andd,   Multiple 

solutions 

1. MLPBP:29.3 

2. ANFIS:23.2 

3. MLPPSO:21.8 

4. MLPGWO:15.3 

5. MLPTLBO:17.8

6 

6. MLPGA:6.13 

7. MLPCIBO:18.21 

Pioneer 

arm2 

(5-dof) 

Rigid 

(R-R-R-

R-R) 

Spatial 54321 and,   Multiple 

solutions 

1. MLPBP:29.22 

2. ANFIS:24.36 

3. MLPPSO:18.45 

4. MLPGWO:14.36 

5. MLPTLBO:16.5

2 

6. MLPGA:6.99 

7. MLPCIBO:15.26 

PUMA 

560 

(6-dof) 

Rigid 

(R-R-R-

R-R-R) 

Spatial 

Type-C 
6

54321

and

,




 Multiple 

solutions 

1. MLPBP:31.01 

2. ANFIS:29.85 

3. MLPPSO:19.96 

4. MLPGWO:14.22 

5. PMLTLBO:14.6

3 

6. MLPGA;7.59 

7. MLPCIBO:15.79 

 

ABB IRb-

1400(6-

dof) 

Rigid 

(R-R-R-

R-R-R) 

Spatial 

Type-

A1 6

54321

and

,




 Multiple 

solutions 

1. MLPBP:30.88 

2. ANFIS:29.64 

3. MLPPSO:19.22 

4. MLPGWO:14.60 

5. MLPTLBO:13.1

4 

6. MLPGA:7.06 

7. MLPCIBO:15.49 

 

ASEA 

IRb6 (5-

dof) 

Rigid 

(R-R-R-

R-R-R) 

Spatial 

Type-

A2 
54321 and,   Multiple 

solutions 

1. MLPBP:28.50 

2. ANFIS:25.41 

3. MLPPSO:16.04 

4. MLPGWO:13.71 

5. MLPTLBO:13.9

0 

6. MLPGA:5.23 

7. MLPCIBO:15.55 

 

STÄUBLI  

RX160 L 

(6-dof) 

 

 

 

Rigid 

(R-R-R-

R-R-R) 

Spatial 

Type-

B2 6

54321

and

,




 Multiple 

solutions 

1. MLPBP:31.33 

2. ANFIS:30.26 

3. MLPPSO:21.84 

4. MLPGWO:19.76 

5. MLPTLBO:18.2

5 

6. MLPGA:8.90 

7. MLPCIBO:19.06 



     

  280 

 

Apart from conventional tools as well as neural network based approaches for solving 

inverse kinematic problem, optimization based approaches are also considered. The 

detail description and mathematical modelling of the objective function is presented in 

chapter 6.   As can be realized from the conventional and intelligence based solution, it 

is lengthy and time consuming method. Therefore, to overcome the problem of 

mathematical complexities as well as higher level of programming, the position and 

orientation error based optimization function is used. Although the computational time 

is nearly similar to intelligent based methods but the efficiency and quality of the 

solution is more reliable. The comparison has been made on the basis of computational 

time as well as number of solutions. The optimization based approaches produces 

multiple solution during the iteration but once the algorithm reached to the maximum 

iteration or termination point it provides optimized solution for the inverse kinematic 

problem. Therefore, summarized results obtained through the different optimization 

based approaches and their comparison has been presented in Table 7.41.  

Table 7.41 Comparative analysis of optimization algorithms 

Methods Adopted On Outcomes Remarks 

Optimization 

approaches 

 

1. PSO 

2. GWO 

3. TLBO 

4. GA 

5. CIBO 

 

Robots Structures Types Joint variables 
No. of 

Solutions 

CT 

(Seconds) 

SCARA 

(4-dof) 

Flexible 

(R-R-P-R) 
SCARA 4321 andd,   Multiple 

solutions 

1. PSO: 17.22 

2. GWO:11.68 

3. TLBO:14.23 

4. GA:4.96 

5. CIBO:14.08 

 

Pioneer arm2 

(5-dof) 

Rigid 

(R-R-R-R-

R) 

Spatial 54321 and,   Multiple 

solutions 

1. PSO: 16.88 

2. GWO:3.45 

3. TLBO:15.67 

4. GA:7.92 

5. CIBO:29.41 

 

PUMA 560 

(6-dof) 

Rigid 

(R-R-R-R-

R-R) 

Spatial 

Type-C 
6

54321

and

,




 Multiple 

solutions 

1. PSO: 31.86 

2. GWO:25.82 

3. TLBO:29.54 

4. GA:5.89 

5. CIBO:30.56 

 

 

ABB IRb-

1400(6-dof) 

Rigid 

(R-R-R-R-

R-R) 

Spatial 

Type-A1 
6

54321

and

,




 Multiple 

solutions 

1. PSO: 30.14 

2. GWO:12.89 

3. TLBO:12.05 

4. GA:5.03 

5. CIBO:14.30 

 

 

ASEA IRb6 

(5-dof) 

Rigid 

(R-R-R-R-

R-R) 

Spatial 

Type-A2 
54321 and,   Multiple 

solutions 

1. PSO: 29.11 

2. GWO:15.36 

3. TLBO:15.58 

4. GA:5.04 

5. CIBO:15.77 
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7.6 Summary 

A detail analysis of inverse kinematic problem of selected benchmark manipulators and 

their simulation studies are carried out with some adopted conventional and reactive 

approaches. In this chapter few models of ANN is used to find out the inverse kinematic 

solution of selected benchmark manipulators as presented in Table 3.1. On the other 

hand, optimization algorithms are adopted and comparison has been made with the 

hybrid ANN algorithms. The obtained results are presented in the form of graphs and 

tables.  MATLAB programs are used to resolve the problem of inverse and forward 

kinematics of selected manipulators.  Results obtained through adopted methods are 

compared with the results of conventional methods and are presented in tables as well 

as in figures. Application of optimization algorithms and their comparison are presented 

in figures and tables. The quality and efficiency of the proposed algorithms have been 

presented in this chapter. On the basis of performed kinematic analysis on selected 

configuration of robot manipulators can be summarized as: 

 A conventional approach provides closed form solution of inverse kinematic 

problem but it requires complex mathematics. Hence quaternion vector method 

has been used to calculate the inverse kinematic of selected manipulators. On 

the other hand, homogeneous transformation method is also used to resolve the 

inverse kinematic problem for selected configurations. After calculation of 

inverse kinematic of robot manipulators these data sets were used to train ANN 

models.  

 ANN based approach are quite flexible and easy to resolve kinematic problems. 

Adopted ANN models are MLP, PPN and Pi-sigma are performing well for 

inverse kinematic problem. In comparison with the adopted ANN models 

MLPNN with back propagation algorithm giving better results than other 

models. Hence MLPNN has been applied for all configurations of robot 

manipulator.  

 

 

STÄUBLI  

RX160 L 

(6-dof) 

 

 

 

Rigid 

(R-R-R-R-

R-R) 

Spatial 

Type-B2 
6

54321

and

,




 Multiple 

solutions 

1. PSO:21.74 

2. GWO:14.28 

3. TLBO:16.47 

4. GA:8.99 

5. CIBO:21.54 
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 The hybrid MLPNN method provides less error as compared to normal MLPNN 

method. Hybridisation of optimization algorithms gives fast exploration and 

exploitation ability to the network. The results obtained using hybrid ANN and 

ANFIS are compared and verified with the conventional solution of inverse 

kinematics of robot manipulator. Obtained results are reasonable and accurate as 

compared to normal ANN models, therefore it can be accepted.  

 The metaheuristic algorithm produces flexible structure for the resolution of 

inverse kinematic problem. The bio-inspired population based algorithms 

reveals satisfactory performance for the considered problem. The result exhibits 

constant convergence behaviour of the adopted algorithms for different 

configurations of manipulator. Genetic algorithm is performing best for all 

considered manipulator configuration.  
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Chapter 8 

CONCLUSIONS AND FUTURE WORK  

8.1 Overview 

Inverse kinematics of any robot manipulator can generally be defined as finding out the 

joint angles for specified Cartesian position as well as orientation of an end effector and 

opposite of this, determining position and orientation of an end effector for given joint 

variables is known as forward kinematics. Forward kinematic having unique solution 

but in case of inverse kinematics it does not provide any closed form or unique solution 

thus it is require to have some suitable technique to resolve the problem for any 

configuration of  robot manipulator. Hence, inverse kinematics solution is very much 

problematic and computationally expensive. For real time control of any configuration 

manipulator will be expensive and generally it takes long time. Most of the robotic 

applications are dependent on the joint variables of manipulator due to fact that the 

requirement of the desired position of the end effector. For the computing the analogous 

joint angles at high speed requires inverse kinematic transformation of each joint. 

Therefore, the current research work proposes inverse kinematic solution for various 

configurations of robot manipulator. The basic kinematics and mathematical modelling 

of the configurations are discussed thoroughly and subsequently kinematic analyses of 

selected configurations have been done. The concept and application of neural network 

models for inverse kinematic resolutions are discussed in length. To overcome the 

drawbacks of ANN model hybridization with optimization algorithms and their 

strategies are also made. In chapter 6, numerical solutions of the inverse kinematic 

problem of selected manipulator based on metaheuristic algorithms have been made. 

Optimization approaches are used to transform the kinematic mapping problem of the 

manipulators into constrained non-linear metaheuristic models. This approach gives the 

freedom to direct search of feasible configuration space of the robot end effector to 
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yield the joint variables of the manipulator with the minimization of position and 

orientation of end effector.  The present work is summarized with the concluding 

remarks in the next section stating that contributions of the present research work.  The 

scope of future work to extend or to modify or to add some other new concept to the 

work is suggested in the present chapter.  

8.2 Conclusions 

Inverse kinematic analysis of any configuration of robot manipulator is playing major 

role for robotic system. From the viewpoint of different configurations to simulation 

and real time control kinematic relationship of the robot plays crucial role for 

completion of given task. Mathematical complexities of inverse kinematic formulations 

using conventional approaches are expensive and time consuming but apart from the 

mathematical expenses it provides the closed form solution. To overcome the problem 

of mathematical operations of inverse kinematic of robot manipulator some techniques 

form the neural network models are required. ANN based approaches are quite fruitful 

for the inverse kinematic inversion. The architecture and working principle of the ANN 

provides the complex and non-linear functional organisation of the input output data. 

The data sets used for training can be generated from the forward kinematic equations 

of manipulator. Moreover, the generated data sets should be large so as to minimize the 

learning error of the network. The learning from the forward kinematic data sets is 

expensive and time consuming. The major drawback of ANN models are, it requires the 

optimization mechanism for the training of the structure and mostly stuck at local 

optimum point. Conventional methods like gradient descent learning algorithms gives 

effective and stable results to inverse kinematic problem. However, this classical 

algorithm provides stable solution but it converges into local optimum point and carries 

out constraint on the fitness function. Hence, the classical algorithms can be fruitfully 

used for the constrained robot manipulators. Therefore, to overcome the problem for 

higher dof, different population based optimization algorithms are hybridized with the 

ANN model.  

On the other hand, for higher dof and complex task of robot manipulator, population 

based optimization algorithms can be used with the generic formulation of objective 

function. The optimization algorithms should be able to handle the problem of 

nonlinear, NP-hard and multimodal search problems. The major advantages of the 

optimization based inverse kinematic solution are; (1) it can cope with any 

configuration of robot manipulator (2) forward kinematic formulation are the only 

requirement for the generation of the objective function, (3) no. of optimization 

algorithms can be used for the single objective function (4) solution can be easily 
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obtained in the joint coordinates (5) it can handle constraint into the search space. 

Therefore, application of optimization algorithms and their theories are discussed 

thoroughly. Moreover, application on some selected manipulators and their 

performance are discussed in the previous chapter. This particular piece of research 

work aimed at achieving a precise and faster solution to inverse kinematic problems of 

industrial robots by using appropriate techniques. The major highlights of this research 

work are presented in the following lines.  

 In the present research work DH-algorithm, homogeneous transformation and 

quaternion vector based methods and their significance for the kinematic 

analysis have been studied. Mathematical modelling of the forward and inverse 

kinematic problem of open chain revolute as well as SCARA robot with 3 to 6 

joint axis is done. In this work quaternion vector based kinematic formulations 

have been done for selected configurations of the robot manipulator. The 

conventional kinematic equations of the open chain manipulator are transformed 

into consecutive quaternion transformations matrices and then articulated using 

quaternion. From the comparative results of homogeneous transformation 

methods with the quaternion based approach, mathematical operations are more 

in case of homogeneous transformation method. To maintain the accuracy of the 

obtained solution and reduce mathematical operations, quaternion based 

approach are much better. From chapter 4, it can be clearly understood that the 

quaternion vector based method delivers a very effective and efficient tool as 

compared to other conventional approach. Further, the adopted method is cost 

effective due to its less mathematical operations. Comparing with the 

homogeneous transformation methods, it can be observed that quaternion 

method produces same results with less time consumption. Therefore, this 

method can be applied to any configuration of robot manipulator. This can be 

used as general tool for the kinematic solution of n-dof robot manipulator. 

Finally the data sets of the selected manipulator can be prepared either by 

homogeneous or quaternion method for training of ANN models.  

 Since inverse kinematic solution yields number of alternate solutions, an 

appropriate iterative or intelligence based technique can be used. Forward 

kinematic solution of any configuration is producing exact solution. Therefore, 

the generated data sets can be easily used to train the ANN models. Further 

trained network predicts the inverse kinematic solution of the selected 

configuration of the robot manipulator. In the present work MLP, PPN and Pi-

sigma neural network is use to solve inverse kinematic problem. Later ANN 

based solutions are used to compare with the ANSFIS and hybrid ANNs. 



     

  286 

 

Similar to ANN models, ANFIS was trained from the generated data sets within 

the limit of workspace. The ANFIS tool box from MATLAB is used to calculate 

the joint variables of the some selected configuration of robot manipulator. This 

method works on the principle of multiple inputs with single output (MISO) 

system. For all selected configuration of robot manipulator FIS (Fuzzy inference 

system) structure are obtained and applied for prediction of the individual joint 

angles. The process of training and testing of ANFIS structure for the particular 

problem is quite lengthy process. However, once the training of the structure is 

completed then it can be saved and used for number of inputs with minimal 

developed error.  

 Despite the advantages of the neural network and ANFIS approach for inverse 

kinematic resolution, a chief concern that often comes is about the convergence 

and stability of the solution. These networks training generally converged into 

the local optimum point as discussed in chapter 5. Therefore, neural network 

models can be hybridize with population based optimization algorithm to update 

the weight and bias of the network. The hybridization scheme has already been 

discussed in chapter 5. Moreover, it is also enclosed the combination of 

optimization algorithms with MLP neural network as well as comparison of 

gradient descent learning algorithms and appropriate scheme. After the 

application of the metaheuristic algorithms and trained neural network, is 

applied to find out the inverse kinematic solution of the robot manipulators. 

Different types of configuration of the robot manipulators have been taken for 

the kinematic analysis. 

 Although there are many advantages of ANN and hybrid ANN that can be easily 

implemented for the inverse kinematic solution but important concern is 

computational cost and convergence speed of the algorithm. ANN models with 

back propagation learning gives poor performance for the higher dof robot 

manipulators. The nonlinear functional relationship for higher dof problem 

become unstable and produces unacceptable error at the end of learning process. 

Therefore population based optimization algorithms can be gainfully used to 

find out the inverse kinematic solution. The only requirement for the application 

of optimization algorithms is to develop the objective function for the concern 

manipulator. In chapter 6, objective function formulations are discussed in detail 

which can be further applied with minor modifications to any configuration of 

manipulator. Moreover, the objective function produces the candidate solution 

of each individual joint variable and that can be defined by the configuration 

vector of manipulator with number of point within the workspace limit. This 

method requires only the formulation of the forward kinematic equations of the 
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robot manipulator and associated constant or parameters. This method provides 

flexibility to complete many task related to robot manipulator like design, 

kinematic analysis, synthesis of kinematic structures etc.  

 On the other hand, many optimization algorithms require the number of control 

parameters setting and this increases the complexity of the adopted algorithm. 

The parameter associated with the algorithms can make the differences in the 

results like accuracy, convergence speed, efficiency, global optimum point and 

computational cost. Therefore, to avoid many parameter setting, novel effectual 

nature-inspired metaheuristic optimization technique grounded on crab 

behaviour is proposed (see chapter 6).  The proposed Crab Intelligence Based 

Optimization (CIBO) technique is a population cantered iterative metaheuristic 

algorithm for D-dimensional and NP-hard problems.  Besides using Jacobian 

matrix for the mapping of task space to the join variable space, forward 

kinematic equations are used. Kinematic singularity is avoided using these 

formulations as compared to other conventional Jacobian matrix based methods. 

Different types of configuration of the robot manipulators have been taken for 

the kinematic analysis. In general, proposed crab based algorithm gives generic 

solution of the inverse kinematic problem for some selected benchmark 

manipulators. But the proposed CIBO algorithm having some limitations like, it 

cannot apply for real time control and application for higher dof manipulator; it 

takes time to converge in single optimum point, etc.  

8.3 Contributions 

The major contributions of the current work towards the inverse kinematic solutions 

are: 

i. The developed mathematical modelling of various configurations of robot 

manipulator provides the generic solution to the specific problem. 

Quaternion vector pair based methods provides efficient tool for the inverse 

kinematic resolution. This method yield similar result as compared to other 

conventional methods therefore it can be generalized for the kinematic 

inversion. The developed derivation for the selected manipulators can be 

used to find the inverse kinematic solution.  

ii. ANN models generally doesn‘t not guarantee exact solution of inverse 

kinematic problem, therefore hybrid scheme has been proposed to solve the 

above problem. The major contribution of the work is to present novel 

hybrid ANN algorithm and their application on the kinematic problem. 
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Different proposed hybrid ANN models are discussed in chapter 5 and their 

consequently results are tubulised in chapter 7.  

iii. To avoid the problem of singularity or Jacobian matrix based numerical 

solution of the inverse kinematic; a population based optimization 

algorithms have been proposed for the kinematic inversion. The major 

challenge with the numerical solution is stability of the solution and it 

increase with the number of dof of manipulator.  

iv. A novel CIBO algorithm is proposed to solve the inverse kinematic solution 

of the robot manipulator. The proposed algorithm is based on the some 

specific behaviour of the Crabs such as social behaviour, recognition 

behaviour and crossing behaviour as discussed in chapter 6.  

8.4 Future research 

Inverse kinematic problem is one of the major concerns for many researchers. From 

past few decades many researchers have been trying to produce general solution method 

for different configuration and also for n-dof manipulators. The result obtained through 

the previous research is the foundation for the development of general solution of the 

problem. The adopted methods like intelligence based approach, conventional approach 

and an optimization algorithm provides a basic tool for the inverse kinematic solution. 

Therefore in the present work first stone of the foundation has been laid and hopefully it 

might motivate other researcher to develop novel methods for the kinematic inversion. 

Further research can be focused on modifying the ANN models to get less training 

error. Particularly setting of some tuning parameters like learning rate, momentum 

coefficient etc. could be useful to avoid local optimum points. Hybridisation of the 

ANN models can be done with the hybrid optimization algorithm with other ANN 

models like, RBFN, Elman's neural network etc.  

Control parameter of inverse kinematic objective function formulation can be modified 

for the comparative analysis of the optimization algorithms. Therefore, alternative 

representation of the pose error formulations and application of other metaheuristic 

algorithms could be verified and comparison has to be done. The developed 

optimization algorithm can be used to calculate the inverse kinematic of constrained 

robotic systems.  

The performance on the basis of accuracy and computational cost for the alternate 

objective function can be examined.  

Conventional methods like dual quaternion, exponential matrix algebra, Lie algebra or 

Grobner bases can be used to solve inverse kinematic problem.  
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